代谢物
代谢组学
质谱法
质谱成像
注释
错误发现率
计算生物学
分辨率(逻辑)
高分辨率
化学
色谱法
计算机科学
生物
人工智能
生物化学
遥感
基因
地质学
作者
Andrew Palmer,Prasad Phapale,Ilya Chernyavsky,Régis Lavigne,Dominik Fay,Artem Tarasov,Vitaly Kovalev,Jens Fuchser,Sergey Nikolenko,Charles Pineau,Michael Becker,Theodore Alexandrov
出处
期刊:Nature Methods
[Springer Nature]
日期:2016-11-14
卷期号:14 (1): 57-60
被引量:367
摘要
The authors present a computational framework for false-discovery-rate-controlled metabolite annotation from high-resolution imaging mass spectrometry data. High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cellular resolution, but it is hampered by the lack of bioinformatics tools for automated metabolite identification. We report pySM, a framework for false discovery rate (FDR)-controlled metabolite annotation at the level of the molecular sum formula, for high-mass-resolution imaging mass spectrometry ( https://github.com/alexandrovteam/pySM ). We introduce a metabolite-signal match score and a target–decoy FDR estimate for spatial metabolomics.
科研通智能强力驱动
Strongly Powered by AbleSci AI