Multi-sensor integrated framework and index for agricultural drought monitoring

环境科学 农业 气候学 地理 地质学 考古
作者
Xiang Zhang,Nengcheng Chen,Jizhen Li,Zhihong Chen,Dev Niyogi
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:188: 141-163 被引量:144
标识
DOI:10.1016/j.rse.2016.10.045
摘要

Agricultural drought is a complex and insidious natural hazard further complicated by crop impacts. Univariate, bivariate, and multivariate drought analyses have achieved some success, but the analysis of agricultural drought evolution and integration with crop growth is still lacking. In this study, an Evolution Process-based Multi-sensor Collaboration (EPMC) framework was proposed with the realization that effective agricultural drought assessment requires an integrated approach that considers both drought development and crop phenology. Then the Process-based Accumulated Drought Index (PADI) was designed to quantify the accumulative drought impacts on crops. Based on the monitoring of precipitation, soil moisture, and vegetation conditions, EPMC extracted four main agricultural drought evolution phases termed: (i) latency, (ii) onset, (iii) development, and (iv) recovery. Subsequently, the crop growth stages and water-deficit sensitivity coefficients were integrated with the drought evolution process. Experiments conducted in three different climate regions of China demonstrated that the EPMC framework could clearly depict evolution of the different phases of agricultural drought. Three decades of multi-sensor datasets include monthly precipitation from the Global Precipitation Climatology Centre (GPCC), root zone soil moisture from the satellite-model integrated Global Land Data Assimilation System version 2 (GLDAS-2.0), and vegetation condition data from the Advanced Very High Resolution Radiometer (AVHRR). Results indicated that PADI reliably provided a weekly evaluation of accumulative drought severity instead of a “snapshot”. PADI was also compared with the Palmer Drought Severity Index (PDSI) and multi-time scale of Standardized Precipitation Index (SPI). Results showed good correlation with short-term SPI at the onset of drought as well as long-term SPI at later stages. Additionally, compared to the correlation with precipitation, soil moisture, and vegetation data alone, it was found that as an integrated model, PADI correlated well with wheat yield loss (Spearman rank correlation coefficient ρ was between 0.66 and 0.77, p < 0.05). Therefore, the proposed multi-sensor integrated monitoring framework and index provide a useful and new approach to address the complexity of agricultural drought, with particular relevance to drought impact assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
2秒前
2秒前
2秒前
111完成签到 ,获得积分10
3秒前
3秒前
3秒前
hchnb1234完成签到,获得积分10
4秒前
Bo完成签到,获得积分10
4秒前
Cgy发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
munire发布了新的文献求助10
5秒前
达西西发布了新的文献求助10
5秒前
墨墨完成签到 ,获得积分10
6秒前
虾米发布了新的文献求助10
6秒前
完美世界应助铁豆采纳,获得20
6秒前
Yapi发布了新的文献求助10
6秒前
小石发布了新的文献求助10
7秒前
7秒前
8秒前
潮汐发布了新的文献求助10
8秒前
dengar发布了新的文献求助10
8秒前
许大脚完成签到 ,获得积分10
8秒前
kang发布了新的文献求助10
9秒前
大个应助Shaka采纳,获得10
9秒前
9秒前
9秒前
zzz发布了新的文献求助10
10秒前
肖善若发布了新的文献求助10
11秒前
11秒前
一区哥发布了新的文献求助30
11秒前
YUMI发布了新的文献求助10
11秒前
Q杰完成签到 ,获得积分10
11秒前
爱吃巧克力应助munire采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534