A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
行走人生发布了新的文献求助30
1秒前
1秒前
eryu25完成签到 ,获得积分10
1秒前
wmtttttt发布了新的文献求助10
1秒前
所所应助周伊采纳,获得10
2秒前
3秒前
以鹿之路发布了新的文献求助10
4秒前
张骥发布了新的文献求助20
4秒前
猕猴桃完成签到,获得积分10
5秒前
jbg完成签到 ,获得积分10
6秒前
海绵宝宝发布了新的文献求助10
6秒前
6秒前
6秒前
DrQyQ发布了新的文献求助10
7秒前
hh发布了新的文献求助10
7秒前
Akim应助zqgxiangbiye采纳,获得10
8秒前
土豆泥泥关注了科研通微信公众号
10秒前
Akim应助科研通管家采纳,获得10
10秒前
星辰大海应助酷炫萃采纳,获得10
10秒前
毛豆爸爸应助科研通管家采纳,获得20
10秒前
111发布了新的文献求助10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
tuanheqi应助科研通管家采纳,获得150
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
852应助纸轮采纳,获得10
13秒前
小兔子完成签到 ,获得积分10
14秒前
Diego发布了新的文献求助30
15秒前
抹茶芝士酸奶完成签到,获得积分10
15秒前
kiki发布了新的文献求助30
16秒前
黄钱红发布了新的文献求助10
16秒前
16秒前
小向同学完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649821
求助须知:如何正确求助?哪些是违规求助? 4779250
关于积分的说明 15050421
捐赠科研通 4808796
什么是DOI,文献DOI怎么找? 2571853
邀请新用户注册赠送积分活动 1528134
关于科研通互助平台的介绍 1486877