A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
好不了一丶完成签到,获得积分10
刚刚
忘崽小油条关注了科研通微信公众号
1秒前
水滴完成签到,获得积分10
2秒前
踏实绮露完成签到 ,获得积分10
2秒前
2秒前
小小沙完成签到,获得积分10
3秒前
Zq完成签到 ,获得积分10
3秒前
xxl发布了新的文献求助10
4秒前
陆lu完成签到,获得积分10
4秒前
清脆刺猬完成签到,获得积分10
4秒前
可爱的函函应助复杂惜霜采纳,获得10
4秒前
白文博完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
kitiker发布了新的文献求助10
8秒前
清秀书兰完成签到 ,获得积分10
8秒前
陆lu发布了新的文献求助20
9秒前
标致的文博完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
12秒前
13秒前
加油呀发布了新的文献求助30
14秒前
14秒前
科研通AI6应助王然采纳,获得10
15秒前
sdniuidifod完成签到,获得积分10
16秒前
cui发布了新的文献求助10
16秒前
风格化橙发布了新的文献求助10
16秒前
17秒前
www111完成签到,获得积分20
17秒前
myelin完成签到,获得积分10
17秒前
chengyida完成签到,获得积分10
18秒前
标致凝莲完成签到 ,获得积分10
19秒前
腼腆的南晴完成签到 ,获得积分10
19秒前
www111发布了新的文献求助10
19秒前
19秒前
田様应助LXJY采纳,获得10
20秒前
端庄的火龙果完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707