A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xuesensu完成签到 ,获得积分10
1秒前
岂识浊醪妙理应助111采纳,获得20
3秒前
dilli发布了新的文献求助10
3秒前
13sdsf完成签到,获得积分20
3秒前
tgoutgou发布了新的文献求助20
4秒前
1111完成签到,获得积分20
4秒前
5秒前
aidiresi发布了新的文献求助10
5秒前
5秒前
墩墩完成签到,获得积分10
6秒前
嘚嘚发布了新的文献求助10
7秒前
7秒前
科研头痛发布了新的文献求助10
8秒前
iNk应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
苏书白应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得30
8秒前
wanci应助科研通管家采纳,获得10
8秒前
9秒前
炒山药完成签到 ,获得积分20
9秒前
9秒前
9秒前
XUHYBOR发布了新的文献求助10
10秒前
wang完成签到,获得积分10
10秒前
10秒前
YY完成签到 ,获得积分10
10秒前
大卡车发布了新的文献求助10
11秒前
111发布了新的文献求助10
13秒前
14秒前
14秒前
洪东智完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157924
求助须知:如何正确求助?哪些是违规求助? 2809233
关于积分的说明 7881039
捐赠科研通 2467723
什么是DOI,文献DOI怎么找? 1313692
科研通“疑难数据库(出版商)”最低求助积分说明 630480
版权声明 601943