亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早川完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助魏欣娜采纳,获得10
12秒前
可爱的函函应助早川采纳,获得10
18秒前
馍夹菜完成签到,获得积分10
18秒前
22秒前
36秒前
Vivian发布了新的文献求助30
41秒前
Fox完成签到,获得积分10
46秒前
科研通AI2S应助魏欣娜采纳,获得10
49秒前
49秒前
维颖完成签到,获得积分10
51秒前
1分钟前
1分钟前
1分钟前
zhvjdb发布了新的文献求助10
1分钟前
Raju发布了新的文献求助100
1分钟前
英姑应助lpy李采纳,获得10
1分钟前
1分钟前
zhvjdb完成签到,获得积分10
1分钟前
Yuuw发布了新的文献求助10
1分钟前
bastien驳回了xxfsx应助
1分钟前
1分钟前
1分钟前
Huzhu应助魏欣娜采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
Yuuw完成签到,获得积分10
1分钟前
1分钟前
Sherry发布了新的文献求助20
1分钟前
充电宝应助青柠采纳,获得10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
2分钟前
2分钟前
33发布了新的文献求助10
2分钟前
2分钟前
田様应助yydcmnyxx采纳,获得30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430