A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Stella应助爱科研大老曹采纳,获得10
刚刚
刚刚
曾无忧发布了新的文献求助10
1秒前
星辰大海应助池鱼思故渊采纳,获得30
1秒前
一刀完成签到,获得积分10
2秒前
Stella应助GC采纳,获得10
2秒前
迅速的易巧完成签到 ,获得积分10
3秒前
3秒前
3秒前
大胆的忆寒完成签到,获得积分10
3秒前
如常发布了新的文献求助10
3秒前
充电宝应助Rr采纳,获得10
3秒前
cyuan发布了新的文献求助10
3秒前
欣喜谷槐完成签到,获得积分10
3秒前
ccepted1122给ccepted1122的求助进行了留言
4秒前
4秒前
4秒前
啊炜发布了新的文献求助200
4秒前
董卓小蛮腰完成签到,获得积分10
4秒前
wwwww完成签到,获得积分10
5秒前
5秒前
mk发布了新的文献求助10
5秒前
5秒前
0range完成签到,获得积分10
5秒前
知秋发布了新的文献求助10
5秒前
mmmm完成签到,获得积分10
6秒前
GuanguanYaa发布了新的文献求助10
6秒前
hsy309完成签到,获得积分10
6秒前
NN发布了新的文献求助30
7秒前
嘲鸫完成签到,获得积分10
7秒前
刘胖胖发布了新的文献求助30
7秒前
7秒前
李晓彤发布了新的文献求助10
8秒前
8秒前
洁净的元蝶完成签到,获得积分10
8秒前
安静的映萱完成签到,获得积分10
8秒前
香蕉冰真发布了新的文献求助10
8秒前
pray完成签到,获得积分20
9秒前
照亮世界的ay完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017