A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹筏过海应助淡然天问采纳,获得30
刚刚
浮游应助淡然天问采纳,获得10
刚刚
领导范儿应助柔弱的冬天采纳,获得30
1秒前
落后翠柏发布了新的文献求助10
2秒前
不安的成协完成签到,获得积分10
3秒前
3秒前
4秒前
长情听南发布了新的文献求助10
5秒前
锦慜发布了新的文献求助10
5秒前
顾矜应助蓦然采纳,获得10
6秒前
可爱的函函应助panda采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
李昕123发布了新的文献求助10
7秒前
7秒前
吧唧完成签到,获得积分10
8秒前
123456完成签到,获得积分10
9秒前
大模型应助wjy321采纳,获得10
9秒前
云漫山发布了新的文献求助10
9秒前
Ruby应助jsss采纳,获得10
10秒前
10秒前
11秒前
wise111发布了新的文献求助30
11秒前
尊敬的小凡完成签到,获得积分10
11秒前
xbx1991发布了新的文献求助30
11秒前
充电宝应助阿良采纳,获得10
13秒前
自信大白菜真实的钥匙完成签到,获得积分10
13秒前
wyh应助活泼溪流采纳,获得30
13秒前
李昕123完成签到,获得积分10
14秒前
14秒前
刺五加完成签到 ,获得积分10
15秒前
852应助Eom采纳,获得10
15秒前
16秒前
16秒前
caoyuya123完成签到 ,获得积分10
16秒前
17秒前
18秒前
风清扬发布了新的文献求助10
18秒前
张宁宁发布了新的文献求助10
19秒前
19秒前
喜悦的威完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704