A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就青筠完成签到,获得积分10
刚刚
生酪拿铁完成签到,获得积分20
1秒前
健忘的绾绾关注了科研通微信公众号
1秒前
1秒前
2秒前
2秒前
364739814发布了新的文献求助10
2秒前
可爱的函函应助xiaoruirx采纳,获得10
2秒前
清爽绮烟完成签到 ,获得积分10
2秒前
3秒前
3秒前
fhz完成签到,获得积分10
4秒前
5秒前
6秒前
清爽绮烟关注了科研通微信公众号
7秒前
8秒前
8秒前
绿色植物发布了新的文献求助10
8秒前
拾诣发布了新的文献求助20
10秒前
boom完成签到,获得积分10
10秒前
10秒前
执着的白桃完成签到,获得积分10
11秒前
无极微光应助酷酷的靖采纳,获得20
11秒前
zhuangxiong完成签到,获得积分10
12秒前
Hannah601完成签到,获得积分10
13秒前
大模型应助RUI采纳,获得10
13秒前
14秒前
科研通AI6应助江水月采纳,获得10
14秒前
Ryan完成签到,获得积分10
14秒前
獭祭鱼发布了新的文献求助10
14秒前
supering11发布了新的文献求助10
14秒前
15秒前
科研通AI6应助考研的青蛙采纳,获得10
15秒前
15秒前
15秒前
夹心发布了新的文献求助10
16秒前
1397完成签到 ,获得积分10
16秒前
17秒前
18秒前
李爱国应助陈陈好吃呢采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618686
求助须知:如何正确求助?哪些是违规求助? 4703697
关于积分的说明 14923247
捐赠科研通 4758321
什么是DOI,文献DOI怎么找? 2550231
邀请新用户注册赠送积分活动 1513010
关于科研通互助平台的介绍 1474379