A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
addbdg完成签到 ,获得积分10
2秒前
zhaozhao完成签到 ,获得积分10
2秒前
简单幻天完成签到,获得积分10
2秒前
等待的鱼完成签到,获得积分10
2秒前
4秒前
4秒前
勤劳坤发布了新的文献求助10
6秒前
捏个小雪团完成签到 ,获得积分10
6秒前
咚咚锵完成签到,获得积分10
8秒前
yugy发布了新的文献求助30
9秒前
coffee发布了新的文献求助10
9秒前
36456657应助三石盟约采纳,获得10
10秒前
11秒前
香蕉觅云应助咚咚锵采纳,获得10
12秒前
浪客完成签到 ,获得积分10
15秒前
tooheys1000发布了新的文献求助10
16秒前
17秒前
映天完成签到 ,获得积分10
18秒前
xi完成签到 ,获得积分10
20秒前
彦成完成签到,获得积分10
23秒前
24秒前
完美大神完成签到 ,获得积分10
24秒前
李健的小迷弟应助小豹子采纳,获得10
26秒前
慕青应助愉快的花卷采纳,获得10
30秒前
31秒前
深情安青应助热情的笑白采纳,获得10
35秒前
pluto应助三石盟约采纳,获得10
37秒前
xdmhv发布了新的文献求助10
39秒前
39秒前
义气天真完成签到,获得积分10
39秒前
tooheys1000完成签到,获得积分10
41秒前
41秒前
向浩完成签到 ,获得积分10
43秒前
木子水告完成签到,获得积分10
44秒前
穆青发布了新的文献求助10
45秒前
46秒前
穆青完成签到,获得积分10
55秒前
55秒前
lllhy完成签到,获得积分10
56秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645604
关于积分的说明 14675724
捐赠科研通 4586775
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460989