亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
Tai应助Carl采纳,获得10
10秒前
朴实的鸡发布了新的文献求助10
15秒前
多情道之完成签到 ,获得积分10
26秒前
乐乐应助风华笔墨采纳,获得10
29秒前
34秒前
风华笔墨发布了新的文献求助10
39秒前
LPPQBB应助科研通管家采纳,获得50
59秒前
1分钟前
ucas大菠萝完成签到,获得积分10
1分钟前
Tai应助Carl采纳,获得10
2分钟前
隐形曼青应助甜味拾荒者采纳,获得10
2分钟前
2分钟前
2分钟前
NexusExplorer应助jama117采纳,获得10
2分钟前
科研通AI2S应助Carl采纳,获得10
2分钟前
甜味拾荒者完成签到,获得积分20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
jama117给jama117的求助进行了留言
3分钟前
3分钟前
wp发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
爆米花应助风华笔墨采纳,获得10
4分钟前
4分钟前
4分钟前
早点毕业发布了新的文献求助10
4分钟前
4分钟前
无花果应助Hu采纳,获得10
4分钟前
4分钟前
脑洞疼应助早点毕业采纳,获得10
4分钟前
喜乐完成签到 ,获得积分10
4分钟前
4分钟前
LPPQBB应助科研通管家采纳,获得10
4分钟前
LPPQBB应助科研通管家采纳,获得10
5分钟前
LPPQBB应助科研通管家采纳,获得10
5分钟前
LPPQBB应助科研通管家采纳,获得10
5分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5335385
求助须知:如何正确求助?哪些是违规求助? 4473206
关于积分的说明 13921381
捐赠科研通 4367414
什么是DOI,文献DOI怎么找? 2399595
邀请新用户注册赠送积分活动 1392703
关于科研通互助平台的介绍 1363911