A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzx发布了新的文献求助20
刚刚
yang发布了新的文献求助10
1秒前
Hiraeth完成签到,获得积分10
1秒前
2秒前
declan发布了新的文献求助10
2秒前
合适觅荷完成签到,获得积分10
3秒前
欢呼的初蓝完成签到,获得积分10
3秒前
3秒前
4秒前
科研通AI6应助miao采纳,获得10
4秒前
Song发布了新的文献求助10
4秒前
读二白完成签到,获得积分10
5秒前
星辰大海应助WMR采纳,获得10
6秒前
yixiaoqi完成签到,获得积分10
6秒前
willz完成签到,获得积分10
7秒前
8秒前
现代的凝莲完成签到,获得积分10
8秒前
0529完成签到,获得积分10
8秒前
猪猪hero发布了新的文献求助10
8秒前
Ava应助落后的纸鹤采纳,获得10
9秒前
852应助齐纳采纳,获得10
9秒前
9秒前
哈哈完成签到 ,获得积分10
10秒前
共享精神应助yixiaoqi采纳,获得10
10秒前
乐橙发布了新的文献求助100
11秒前
矮冬瓜完成签到 ,获得积分10
11秒前
稳重的寒梦完成签到,获得积分20
12秒前
mz完成签到 ,获得积分10
12秒前
CartGo发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
li完成签到,获得积分10
14秒前
发文章12138完成签到,获得积分10
15秒前
llyu发布了新的文献求助10
15秒前
LALALA发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525236
求助须知:如何正确求助?哪些是违规求助? 4615551
关于积分的说明 14548959
捐赠科研通 4553590
什么是DOI,文献DOI怎么找? 2495405
邀请新用户注册赠送积分活动 1475947
关于科研通互助平台的介绍 1447675