A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Quinn发布了新的文献求助10
1秒前
2秒前
李志发布了新的文献求助10
3秒前
哇哇哇哇发布了新的文献求助20
3秒前
rui完成签到 ,获得积分10
3秒前
4秒前
kevinqpp发布了新的文献求助10
4秒前
4秒前
Xiaoduoyu发布了新的文献求助10
4秒前
5秒前
善学以致用应助黑就嘿采纳,获得10
5秒前
Wayne发布了新的文献求助10
6秒前
chenchen发布了新的文献求助10
6秒前
Hello应助快乐的紫山采纳,获得10
7秒前
TJH完成签到,获得积分10
7秒前
马小梁发布了新的文献求助10
7秒前
8秒前
生动的问柳应助神勇秋白采纳,获得10
8秒前
JJDS完成签到,获得积分10
8秒前
9秒前
rui关注了科研通微信公众号
9秒前
10秒前
10秒前
大模型应助张远幸采纳,获得10
11秒前
犹豫山菡完成签到,获得积分10
11秒前
zweq发布了新的文献求助10
11秒前
11秒前
Harden完成签到,获得积分10
12秒前
余芝发布了新的文献求助10
13秒前
每每反完成签到,获得积分10
13秒前
shirly完成签到,获得积分10
13秒前
求助人员发布了新的文献求助10
14秒前
Wayne完成签到,获得积分10
14秒前
14秒前
FashionBoy应助哇owao采纳,获得10
15秒前
时尚的归尘完成签到,获得积分10
15秒前
小波比完成签到 ,获得积分10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490