硫化镉
费斯特共振能量转移
罗丹明
罗丹明B
转身(生物化学)
镉
硫化物
化学
离子
生物物理学
纳米技术
荧光寿命成像显微镜
材料科学
荧光
无机化学
物理
光学
生物化学
有机化学
作者
M. Maniyazagan,Richard Mariadasse,Jeyaraman Jeyakanthan,Neratur Krishnappagowda Lokanath,S. Naveen,Kumpati Premkumar,P. Muthuraja,Paramasivam Manisankar,Thambusamy Stalin
标识
DOI:10.1016/j.snb.2016.07.102
摘要
Abstract A novel fluorescent chemosensor based on a rhodamine derivative (RBD4) was designed, synthesized, and used as a selective Cd2+ ion sensor. The structure of the fluorescence sensor (RBD4) is confirmed through single crystal X-ray study. On the basis of the Forster resonance energy transfer mechanism between rhodamine and pyridine conjugated dyad, a new colorimetric as well as fluorescence probe was synthesized for the selective detection of Cd2+. This sensor shows high selectivity towards Cd2+ ions in the presence of other competing metal ions. On the basis of thorough experimental and theoretical findings, the additions of Cd2+ ions to the solution of RBD4 helps to generate a new fluorescence peak at 590 nm due to the selective binding of Cd2+ ions with RBD4 in a 1: 1 ratio with a binding constant (K) of 4.2524 × 104 M−1. The detection limit of RBD4 for Cd2+ was 1.025 × 10−8 M, which presented a pronounced sensitivity towards Cd2+. The in situ generated RBD4–Cd2+ complex is able to selectively sense S2− over other anions based on the displacement approach, given a remarkable recovery of fluorescence and UV–vis absorption spectra. The fluorescence sensor has also exhibited very good results in HeLa Cells imaging under physiological pH.
科研通智能强力驱动
Strongly Powered by AbleSci AI