Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation

材料科学 成核 格子(音乐) 凝聚态物理 延展性(地球科学) 位错 马氏体 降水 材料的强化机理 复合材料 微观结构 热力学 蠕动 声学 物理 气象学
作者
Suihe Jiang,Hui Wang,Yuan Wu,Xiongjun Liu,Honghong Chen,Mengji Yao,Baptiste Gault,Dirk Ponge,Dierk Raabe,Akihiko Hirata,Mingwei Chen,Yandong Wang,Zhaoping Lü
出处
期刊:Nature [Nature Portfolio]
卷期号:544 (7651): 460-464 被引量:1173
标识
DOI:10.1038/nature22032
摘要

Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands. Their outstanding strength originates from semi-coherent precipitates, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 1024 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
池番发布了新的文献求助10
刚刚
kai发布了新的文献求助20
1秒前
Orange应助benben采纳,获得10
2秒前
2秒前
领导范儿应助阔达碧空采纳,获得10
2秒前
开庆完成签到,获得积分10
3秒前
Amelia发布了新的文献求助10
3秒前
哈基米德应助宗剑采纳,获得20
3秒前
虚心的冷松完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
开朗寇发布了新的文献求助10
5秒前
5秒前
科研通AI5应助Hbobo采纳,获得10
6秒前
希望天下0贩的0应助Barry采纳,获得10
6秒前
6秒前
7秒前
甜蜜的白风完成签到,获得积分10
8秒前
神勇难胜发布了新的文献求助10
8秒前
8秒前
AN完成签到,获得积分10
9秒前
9秒前
呼了个呼完成签到,获得积分10
10秒前
lbc完成签到,获得积分10
10秒前
脑洞疼应助钉大帅采纳,获得10
11秒前
湘湘发布了新的文献求助10
11秒前
铁头霸霸完成签到,获得积分10
11秒前
apathy发布了新的文献求助10
12秒前
彪壮的傥完成签到,获得积分10
13秒前
13秒前
13秒前
sapphire发布了新的文献求助20
13秒前
14秒前
14秒前
ximei完成签到,获得积分10
15秒前
元宝完成签到,获得积分10
16秒前
17秒前
NexusExplorer应助miemie采纳,获得10
17秒前
phhh发布了新的文献求助10
17秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131642
求助须知:如何正确求助?哪些是违规求助? 4333372
关于积分的说明 13500477
捐赠科研通 4170310
什么是DOI,文献DOI怎么找? 2286231
邀请新用户注册赠送积分活动 1287130
关于科研通互助平台的介绍 1228164