Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation

材料科学 成核 格子(音乐) 凝聚态物理 延展性(地球科学) 位错 马氏体 降水 材料的强化机理 复合材料 微观结构 热力学 蠕动 声学 物理 气象学
作者
Suihe Jiang,Hui Wang,Yuan Wu,Xiongjun Liu,Honghong Chen,Mengji Yao,Baptiste Gault,Dirk Ponge,Dierk Raabe,Akihiko Hirata,Mingwei Chen,Yandong Wang,Zhaoping Lü
出处
期刊:Nature [Springer Nature]
卷期号:544 (7651): 460-464 被引量:1269
标识
DOI:10.1038/nature22032
摘要

Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands. Their outstanding strength originates from semi-coherent precipitates, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 1024 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJFL完成签到,获得积分10
刚刚
ys完成签到 ,获得积分10
1秒前
日出发布了新的文献求助10
1秒前
薏仁完成签到 ,获得积分10
2秒前
Xingkun_li完成签到,获得积分10
2秒前
隐形曼青应助vivian采纳,获得10
5秒前
在水一方应助日出采纳,获得10
5秒前
6秒前
Michael完成签到,获得积分10
6秒前
海洋发布了新的文献求助10
6秒前
鱼浅溪关注了科研通微信公众号
7秒前
zhaoyaoshi完成签到 ,获得积分10
10秒前
负责冰烟完成签到 ,获得积分10
11秒前
li发布了新的文献求助10
11秒前
日出完成签到,获得积分10
12秒前
思源应助斜对角的苍白采纳,获得10
14秒前
Oui完成签到 ,获得积分10
15秒前
凯凯完成签到,获得积分10
16秒前
16秒前
16秒前
万能的翔王完成签到,获得积分10
16秒前
陈艺杨完成签到 ,获得积分10
18秒前
LuciusHe发布了新的文献求助30
19秒前
慕青应助li采纳,获得10
19秒前
19秒前
鱼浅溪发布了新的文献求助10
21秒前
王一鸣完成签到 ,获得积分10
21秒前
十七完成签到 ,获得积分10
22秒前
mayi完成签到,获得积分10
24秒前
西骑士发布了新的文献求助10
24秒前
星星完成签到 ,获得积分10
24秒前
25秒前
1816013153发布了新的文献求助10
25秒前
科研通AI2S应助周琦采纳,获得10
25秒前
26秒前
车宇完成签到 ,获得积分10
26秒前
不安的晓灵完成签到 ,获得积分10
26秒前
26秒前
热心果汁完成签到,获得积分10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565256
求助须知:如何正确求助?哪些是违规求助? 4650227
关于积分的说明 14690063
捐赠科研通 4592053
什么是DOI,文献DOI怎么找? 2519449
邀请新用户注册赠送积分活动 1491940
关于科研通互助平台的介绍 1463159