Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation

材料科学 成核 格子(音乐) 凝聚态物理 延展性(地球科学) 位错 马氏体 降水 材料的强化机理 复合材料 微观结构 热力学 蠕动 声学 物理 气象学
作者
Suihe Jiang,Hui Wang,Yuan Wu,Xiongjun Liu,Honghong Chen,Mengji Yao,Baptiste Gault,Dirk Ponge,Dierk Raabe,Akihiko Hirata,Mingwei Chen,Yandong Wang,Zhaoping Lü
出处
期刊:Nature [Springer Nature]
卷期号:544 (7651): 460-464 被引量:1269
标识
DOI:10.1038/nature22032
摘要

Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands. Their outstanding strength originates from semi-coherent precipitates, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 1024 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
刚刚
Nann完成签到 ,获得积分10
1秒前
2秒前
烟花应助随想采纳,获得10
3秒前
liyuxuan完成签到,获得积分10
3秒前
十一点二十八分完成签到 ,获得积分10
3秒前
香蕉觅云应助hijuddy采纳,获得30
4秒前
无限白羊发布了新的文献求助10
4秒前
4秒前
5秒前
笨笨易绿发布了新的文献求助10
5秒前
5秒前
Navial30发布了新的文献求助10
5秒前
唐咩咩咩完成签到,获得积分10
6秒前
快乐疯样完成签到,获得积分10
7秒前
bru发布了新的文献求助10
7秒前
7秒前
7秒前
LJQ发布了新的文献求助10
8秒前
8秒前
叫滚滚发布了新的文献求助10
8秒前
LJ程励完成签到 ,获得积分10
8秒前
欢喜昊焱完成签到,获得积分10
9秒前
9秒前
Isla完成签到,获得积分10
10秒前
希望天下0贩的0应助钰L采纳,获得10
10秒前
10秒前
Lucas应助xx采纳,获得10
11秒前
rzy66发布了新的文献求助10
11秒前
小王发布了新的文献求助10
11秒前
慕青应助无限白羊采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
nieyaochi发布了新的文献求助10
13秒前
anders发布了新的文献求助10
13秒前
不工作没饭吃完成签到,获得积分10
13秒前
大方颦发布了新的文献求助10
14秒前
NexusExplorer应助过时的元风采纳,获得10
14秒前
14秒前
14秒前
Ava应助李子采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480228
求助须知:如何正确求助?哪些是违规求助? 4581437
关于积分的说明 14380635
捐赠科研通 4510045
什么是DOI,文献DOI怎么找? 2471647
邀请新用户注册赠送积分活动 1458035
关于科研通互助平台的介绍 1431786