Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation

材料科学 成核 格子(音乐) 凝聚态物理 延展性(地球科学) 位错 马氏体 降水 材料的强化机理 复合材料 微观结构 热力学 蠕动 声学 物理 气象学
作者
Suihe Jiang,Hui Wang,Yuan Wu,Xiongjun Liu,Honghong Chen,Mengji Yao,Baptiste Gault,Dirk Ponge,Dierk Raabe,Akihiko Hirata,Mingwei Chen,Yandong Wang,Zhaoping Lü
出处
期刊:Nature [Nature Portfolio]
卷期号:544 (7651): 460-464 被引量:1173
标识
DOI:10.1038/nature22032
摘要

Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands. Their outstanding strength originates from semi-coherent precipitates, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 1024 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助王子恒采纳,获得10
刚刚
刚刚
4652376完成签到 ,获得积分0
刚刚
yyy完成签到,获得积分10
2秒前
球闪发布了新的文献求助10
3秒前
谦让夏云完成签到,获得积分10
4秒前
donzang完成签到,获得积分10
4秒前
4秒前
风屿完成签到,获得积分10
4秒前
脑洞疼应助忧心的不言采纳,获得10
4秒前
小青椒应助wqr采纳,获得30
5秒前
周老八发布了新的文献求助10
6秒前
彩色的谷兰完成签到,获得积分10
6秒前
7秒前
球闪完成签到,获得积分10
7秒前
adeno发布了新的文献求助10
8秒前
领导范儿应助小易采纳,获得10
8秒前
10秒前
好好学习完成签到,获得积分10
11秒前
王钟萱完成签到,获得积分10
11秒前
结实白柏发布了新的文献求助10
11秒前
FashionBoy应助拼搏的从雪采纳,获得10
11秒前
MelonWong发布了新的文献求助10
12秒前
心安完成签到,获得积分10
12秒前
14秒前
14秒前
15秒前
16秒前
1111完成签到,获得积分20
16秒前
斯文败类应助homeland采纳,获得10
17秒前
nan完成签到,获得积分10
17秒前
baidu发布了新的文献求助10
18秒前
慕青应助Viper3采纳,获得30
19秒前
思源应助忧心的襄采纳,获得10
20秒前
252525发布了新的文献求助10
20秒前
21秒前
23秒前
深情安青应助结实白柏采纳,获得30
24秒前
刘泗青应助杨洋采纳,获得10
24秒前
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488