Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation

材料科学 成核 格子(音乐) 凝聚态物理 延展性(地球科学) 位错 马氏体 降水 材料的强化机理 复合材料 微观结构 热力学 蠕动 声学 物理 气象学
作者
Suihe Jiang,Hui Wang,Yuan Wu,Xiongjun Liu,Honghong Chen,Mengji Yao,Baptiste Gault,Dirk Ponge,Dierk Raabe,Akihiko Hirata,Mingwei Chen,Yandong Wang,Zhaoping Lü
出处
期刊:Nature [Springer Nature]
卷期号:544 (7651): 460-464 被引量:987
标识
DOI:10.1038/nature22032
摘要

Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands. Their outstanding strength originates from semi-coherent precipitates, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 1024 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容鸭子发布了新的文献求助10
1秒前
bkagyin应助一文字豪树采纳,获得10
1秒前
2秒前
非常完成签到,获得积分10
2秒前
Sheart发布了新的文献求助10
2秒前
123完成签到,获得积分10
3秒前
风趣世开完成签到 ,获得积分10
3秒前
陶醉的又夏完成签到 ,获得积分10
3秒前
在水一方应助权雨灵采纳,获得10
4秒前
丹丹子完成签到 ,获得积分10
5秒前
我是老大应助zty采纳,获得10
5秒前
666完成签到 ,获得积分10
6秒前
体贴薯片完成签到,获得积分10
7秒前
xiao完成签到,获得积分10
7秒前
青田101完成签到,获得积分10
8秒前
合适的寄灵完成签到 ,获得积分10
8秒前
天天快乐应助化工人采纳,获得10
8秒前
9秒前
9秒前
shashouzongshuai完成签到,获得积分10
9秒前
xiaowang完成签到,获得积分10
10秒前
marchon完成签到 ,获得积分10
10秒前
大模型应助犹豫小海豚采纳,获得10
10秒前
余琳完成签到,获得积分10
11秒前
11号迪西馅饼完成签到,获得积分10
11秒前
沉静寒云完成签到 ,获得积分10
12秒前
Pride完成签到 ,获得积分10
12秒前
flow完成签到,获得积分10
12秒前
12秒前
123完成签到,获得积分10
13秒前
喜来乐完成签到,获得积分10
14秒前
14秒前
Naomi-yu完成签到,获得积分10
14秒前
皮汤汤完成签到 ,获得积分10
14秒前
糊涂的雁易完成签到,获得积分10
14秒前
尼古丁的味道完成签到 ,获得积分10
15秒前
紧张的店员完成签到,获得积分10
15秒前
炙烤鹅肝关注了科研通微信公众号
15秒前
123发布了新的文献求助30
15秒前
互助棍哥完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147001
求助须知:如何正确求助?哪些是违规求助? 2798279
关于积分的说明 7827502
捐赠科研通 2454919
什么是DOI,文献DOI怎么找? 1306492
科研通“疑难数据库(出版商)”最低求助积分说明 627808
版权声明 601565