Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation

材料科学 成核 格子(音乐) 凝聚态物理 延展性(地球科学) 位错 马氏体 降水 材料的强化机理 复合材料 微观结构 热力学 蠕动 声学 物理 气象学
作者
Suihe Jiang,Hui Wang,Yuan Wu,Xiongjun Liu,Honghong Chen,Mengji Yao,Baptiste Gault,Dirk Ponge,Dierk Raabe,Akihiko Hirata,Mingwei Chen,Yandong Wang,Zhaoping Lü
出处
期刊:Nature [Springer Nature]
卷期号:544 (7651): 460-464 被引量:1269
标识
DOI:10.1038/nature22032
摘要

Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands. Their outstanding strength originates from semi-coherent precipitates, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 1024 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶y发布了新的文献求助10
4秒前
悟空完成签到 ,获得积分10
9秒前
曾经小伙完成签到 ,获得积分10
10秒前
无花果应助xiu采纳,获得10
15秒前
wuyyuan完成签到 ,获得积分10
19秒前
大脸猫完成签到 ,获得积分10
22秒前
专注的觅云完成签到 ,获得积分10
22秒前
温暖完成签到 ,获得积分10
26秒前
26秒前
27秒前
xiu完成签到,获得积分10
27秒前
吴静完成签到 ,获得积分10
30秒前
momo完成签到,获得积分10
30秒前
xiu发布了新的文献求助10
30秒前
ng完成签到 ,获得积分10
31秒前
linjunqi完成签到,获得积分10
32秒前
马昕钰完成签到 ,获得积分10
32秒前
momo发布了新的文献求助10
33秒前
yudoyaer发布了新的文献求助30
35秒前
harden9159完成签到,获得积分10
37秒前
宁静致远完成签到,获得积分10
40秒前
wang完成签到,获得积分10
41秒前
41秒前
风趣惜文完成签到 ,获得积分10
45秒前
xiongguoguo完成签到,获得积分20
46秒前
46秒前
王佳亮完成签到,获得积分10
50秒前
sysi完成签到 ,获得积分10
51秒前
54秒前
康康完成签到 ,获得积分10
54秒前
57秒前
yehuaiyu完成签到,获得积分10
58秒前
哥哥发布了新的文献求助10
1分钟前
yss发布了新的文献求助10
1分钟前
研友_8K2QJZ完成签到,获得积分10
1分钟前
风情阿荣完成签到 ,获得积分10
1分钟前
1分钟前
彭于晏应助yss采纳,获得10
1分钟前
ycd完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325418
求助须知:如何正确求助?哪些是违规求助? 4465883
关于积分的说明 13895000
捐赠科研通 4358174
什么是DOI,文献DOI怎么找? 2393938
邀请新用户注册赠送积分活动 1387356
关于科研通互助平台的介绍 1358111