已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation

材料科学 成核 格子(音乐) 凝聚态物理 延展性(地球科学) 位错 马氏体 降水 材料的强化机理 复合材料 微观结构 热力学 蠕动 声学 物理 气象学
作者
Suihe Jiang,Hui Wang,Yuan Wu,Xiongjun Liu,Honghong Chen,Mengji Yao,Baptiste Gault,Dirk Ponge,Dierk Raabe,Akihiko Hirata,Mingwei Chen,Yandong Wang,Zhaoping Lü
出处
期刊:Nature [Nature Portfolio]
卷期号:544 (7651): 460-464 被引量:1014
标识
DOI:10.1038/nature22032
摘要

Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands. Their outstanding strength originates from semi-coherent precipitates, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 1024 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zbx发布了新的文献求助10
1秒前
Doctor_Mill完成签到,获得积分10
2秒前
乐乐应助平常的乘云采纳,获得10
2秒前
3秒前
Skye完成签到 ,获得积分10
4秒前
5秒前
顺利毕业完成签到,获得积分10
6秒前
Daodao发布了新的文献求助10
6秒前
pgmm完成签到 ,获得积分10
7秒前
null发布了新的文献求助10
7秒前
10秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
传奇3应助踏实书文采纳,获得10
16秒前
隐形曼青应助撒发顺丰采纳,获得10
19秒前
19秒前
huzhu123发布了新的文献求助10
21秒前
隐形曼青应助笑点低千愁采纳,获得10
22秒前
25秒前
lhl完成签到,获得积分10
26秒前
甜甜甜完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助30
30秒前
33秒前
荔枝荔枝关注了科研通微信公众号
34秒前
40秒前
量子星尘发布了新的文献求助10
41秒前
42秒前
JamesPei应助zbx采纳,获得10
42秒前
善学以致用应助gr采纳,获得10
44秒前
科研通AI5应助友好的魔镜采纳,获得10
45秒前
科研通AI5应助科研通管家采纳,获得10
45秒前
酷波er应助科研通管家采纳,获得10
45秒前
活力的小猫咪完成签到 ,获得积分10
46秒前
撒发顺丰发布了新的文献求助10
47秒前
瘦瘦牛排完成签到 ,获得积分10
48秒前
自然完成签到,获得积分10
48秒前
huzhu123完成签到,获得积分10
50秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666285
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762711
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185