Performance Assessment and Translation of Physiologically Based Pharmacokinetic Models From acslX to Berkeley Madonna, MATLAB, and R Language: Oxytetracycline and Gold Nanoparticles As Case Examples

基于生理学的药代动力学模型 计算机科学 软件 MATLAB语言 软件工程 药代动力学 程序设计语言 药理学 医学
作者
Zhoumeng Lin,Majid Jaberi‐Douraki,Chunla He,Shiqiang Jin,Raymond S. H. Yang,Jeffrey W. Fisher,Jim E. Riviere
出处
期刊:Toxicological Sciences [Oxford University Press]
卷期号:158 (1): 23-35 被引量:52
标识
DOI:10.1093/toxsci/kfx070
摘要

Many physiologically based pharmacokinetic (PBPK) models for environmental chemicals, drugs, and nanomaterials have been developed to aid risk and safety assessments using acslX. However, acslX has been rendered sunset since November 2015. Alternative modeling tools and tutorials are needed for future PBPK applications. This forum article aimed to: (1) demonstrate the performance of 4 PBPK modeling software packages (acslX, Berkeley Madonna, MATLAB, and R language) tested using 2 existing models (oxytetracycline and gold nanoparticles); (2) provide a tutorial of PBPK model code conversion from acslX to Berkeley Madonna, MATLAB, and R language; (3) discuss the advantages and disadvantages of each software package in the implementation of PBPK models in toxicology, and (4) share our perspective about future direction in this field. Simulation results of plasma/tissue concentrations/amounts of oxytetracycline and gold from different models were compared visually and statistically with linear regression analyses. Simulation results from the original models were correlated well with results from the recoded models, with time-concentration/amount curves nearly superimposable and determination coefficients of 0.86-1.00. Step-by-step explanations of the recoding of the models in different software programs are provided in the Supplementary Data. In summary, this article presents a tutorial of PBPK model code conversion for a small molecule and a nanoparticle among 4 software packages, and a performance comparison of these software packages in PBPK model implementation. This tutorial helps beginners learn PBPK modeling, provides suggestions for selecting a suitable tool for future projects, and may lead to the transition from acslX to alternative modeling tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖涫完成签到,获得积分10
1秒前
11111发布了新的文献求助10
1秒前
健忘的牛排完成签到,获得积分10
2秒前
wmmm完成签到,获得积分10
2秒前
Akim应助爱吃泡芙采纳,获得10
2秒前
老迟到的书雁完成签到 ,获得积分10
2秒前
2秒前
正经俠发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
学科共进完成签到,获得积分10
5秒前
百草27完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
绵马紫萁发布了新的文献求助10
8秒前
9秒前
fzhou完成签到 ,获得积分10
9秒前
尘雾发布了新的文献求助10
9秒前
10秒前
一一发布了新的文献求助20
10秒前
10秒前
Aixia完成签到 ,获得积分10
11秒前
葡萄糖完成签到,获得积分10
11秒前
哈哈完成签到,获得积分10
11秒前
在水一方应助CC采纳,获得10
11秒前
11秒前
余笙完成签到 ,获得积分10
12秒前
神勇的雅香应助科研混子采纳,获得10
12秒前
TT发布了新的文献求助10
13秒前
李顺完成签到,获得积分20
14秒前
ayin发布了新的文献求助10
14秒前
wait发布了新的文献求助10
14秒前
我是站长才怪应助xg采纳,获得10
15秒前
童话艺术佳完成签到,获得积分10
15秒前
稀罕你完成签到,获得积分10
15秒前
junzilan发布了新的文献求助10
15秒前
anny.white完成签到,获得积分10
16秒前
科研通AI5应助平常的毛豆采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824