Prediction of the antibacterial activity of garlic extract on E. coli, S. aureus and B. subtilis by determining the diameter of the inhibition zones using artificial neural networks

均方误差 相关系数 人工神经网络 Broyden–Fletcher–Goldfarb–Shanno算法 决定系数 数学 皮尔逊积矩相关系数 生物系统 统计 化学 人工智能 计算机科学 生物 计算机网络 异步通信
作者
Djamel Atsamnia,Mabrouk Hamadache,Salah Hanini,Othmane Benkortbi,Dahmane Oukrif
出处
期刊:Lebensmittel-Wissenschaft & Technologie [Elsevier BV]
卷期号:82: 287-295 被引量:23
标识
DOI:10.1016/j.lwt.2017.04.053
摘要

The aim of this study was to devise a model that predicts the inhibition zone diameter using artificial neural networks. The concentration, temperature and the exposure time of our extract were taken as input variables. The neural architecture model 3-13-3 and a learning algorithm Quasi-Newton (BFGS) revealed a positive correlation between the experimental results and those artificially predicted, which were measured according to a mean squared error (RMSE) and an R2 coefficient of E. coli (RMSE = 1.28; R2 = 0,96), S. aureus (RMSE = 1.46; R2 = 0,97) and B. subtilis (RMSE = 1.88; R2 = 0,96) respectively. Based on these results, an external and an internal model validation were attained. A neuronal mathematical equation was created to predict the inhibition diameters for experimental data not included in the basic learning. Consequently, a good correlation was observed between the values predicted by the equation and those obtained experimentally, as demonstrated by the R2 and RMSE values. The results regarding the sensitivity analysis showed that the concentration was the most determinant parameter compared to Temperature and Time variables. Ultimately, the model developed in this study will be used reliably to predict the variation of garlic extract's inhibition diameter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mzl完成签到,获得积分10
1秒前
2秒前
3秒前
cathy完成签到,获得积分10
3秒前
xingyuliu完成签到,获得积分20
3秒前
苹果板凳发布了新的文献求助10
5秒前
水蜜桃完成签到 ,获得积分10
7秒前
kaifeiQi完成签到,获得积分10
9秒前
9秒前
anonymous完成签到,获得积分10
9秒前
10秒前
wtdd发布了新的文献求助10
10秒前
JamesPei应助bias采纳,获得10
10秒前
打打应助岳晓彤采纳,获得10
11秒前
12秒前
hadal完成签到,获得积分10
13秒前
爱lx发布了新的文献求助10
13秒前
科研不通发布了新的文献求助10
13秒前
贪玩若蕊发布了新的文献求助10
13秒前
谦让的半山完成签到 ,获得积分10
14秒前
15秒前
15秒前
whl_321发布了新的文献求助10
15秒前
15秒前
香蕉觅云应助Yatpome采纳,获得30
15秒前
16秒前
饼藏发布了新的文献求助10
17秒前
wtdd完成签到,获得积分20
17秒前
doctorma完成签到 ,获得积分10
18秒前
zzz_yue发布了新的文献求助10
21秒前
enenen发布了新的文献求助10
22秒前
22秒前
小何HUHU完成签到,获得积分10
23秒前
24秒前
无花果应助劳永杰采纳,获得10
24秒前
Famiglistmo完成签到,获得积分10
25秒前
27秒前
大个应助搞笑羽球人采纳,获得10
27秒前
28秒前
PSCs完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578