亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Spatial-Temporal Topic Model for the Semantic Annotation of POIs in LBSNs

计算机科学 情报检索 等级制度 语义学(计算机科学) 注释 主题模型 班级(哲学) 概率逻辑 人工智能 兴趣点 自然语言处理 市场经济 经济 程序设计语言
作者
Tieke He,Hongzhi Yin,Zhenyu Chen,Xiaofang Zhou,Shazia Sadiq,Bin Luo
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:8 (1): 1-24 被引量:26
标识
DOI:10.1145/2905373
摘要

Semantic tags of points of interest (POIs) are a crucial prerequisite for location search, recommendation services, and data cleaning. However, most POIs in location-based social networks (LBSNs) are either tag-missing or tag-incomplete. This article aims to develop semantic annotation techniques to automatically infer tags for POIs. We first analyze two LBSN datasets and observe that there are two types of tags, category-related ones and sentimental ones, which have unique characteristics. Category-related tags are hierarchical, whereas sentimental ones are category-aware. All existing related work has adopted classification methods to predict high-level category-related tags in the hierarchy, but they cannot apply to infer either low-level category tags or sentimental ones. In light of this, we propose a latent-class probabilistic generative model, namely the spatial-temporal topic model (STM), to infer personal interests, the temporal and spatial patterns of topics/semantics embedded in users’ check-in activities, the interdependence between category-topic and sentiment-topic, and the correlation between sentimental tags and rating scores from users’ check-in and rating behaviors. Then, this learned knowledge is utilized to automatically annotate all POIs with both category-related and sentimental tags in a unified way. We conduct extensive experiments to evaluate the performance of the proposed STM on a real large-scale dataset. The experimental results show the superiority of our proposed STM, and we also observe that the real challenge of inferring category-related tags for POIs lies in the low-level ones of the hierarchy and that the challenge of predicting sentimental tags are those with neutral ratings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助周凯采纳,获得10
2秒前
3秒前
斯文败类应助读书的时候采纳,获得10
14秒前
16秒前
komorebi发布了新的文献求助10
20秒前
Akim应助撒旦asd采纳,获得10
28秒前
35秒前
小宋爱科研完成签到 ,获得积分10
36秒前
非蛋白呼吸商完成签到,获得积分10
38秒前
mengliu完成签到,获得积分0
40秒前
华仔应助ohhhhhoho采纳,获得10
45秒前
Criminology34应助komorebi采纳,获得10
49秒前
49秒前
zqq完成签到,获得积分0
49秒前
1分钟前
1分钟前
英俊的铭应助读书的时候采纳,获得10
1分钟前
鱼贝贝完成签到 ,获得积分10
1分钟前
周凯发布了新的文献求助10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
SAIL完成签到 ,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
ohhhhhoho发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
烟消云散完成签到,获得积分10
1分钟前
孙泉发布了新的文献求助10
1分钟前
黎明前发布了新的文献求助10
1分钟前
古今奇观完成签到 ,获得积分10
1分钟前
黎明前完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Weiyu完成签到 ,获得积分10
2分钟前
MiaCong完成签到 ,获得积分10
2分钟前
阿玖完成签到 ,获得积分10
2分钟前
完美世界应助zyw采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731842
求助须知:如何正确求助?哪些是违规求助? 5333685
关于积分的说明 15321719
捐赠科研通 4877673
什么是DOI,文献DOI怎么找? 2620524
邀请新用户注册赠送积分活动 1569833
关于科研通互助平台的介绍 1526289