A Spatial-Temporal Topic Model for the Semantic Annotation of POIs in LBSNs

计算机科学 情报检索 等级制度 语义学(计算机科学) 注释 主题模型 班级(哲学) 概率逻辑 人工智能 兴趣点 自然语言处理 市场经济 经济 程序设计语言
作者
Tieke He,Hongzhi Yin,Zhenyu Chen,Xiaofang Zhou,Shazia Sadiq,Bin Luo
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:8 (1): 1-24 被引量:26
标识
DOI:10.1145/2905373
摘要

Semantic tags of points of interest (POIs) are a crucial prerequisite for location search, recommendation services, and data cleaning. However, most POIs in location-based social networks (LBSNs) are either tag-missing or tag-incomplete. This article aims to develop semantic annotation techniques to automatically infer tags for POIs. We first analyze two LBSN datasets and observe that there are two types of tags, category-related ones and sentimental ones, which have unique characteristics. Category-related tags are hierarchical, whereas sentimental ones are category-aware. All existing related work has adopted classification methods to predict high-level category-related tags in the hierarchy, but they cannot apply to infer either low-level category tags or sentimental ones. In light of this, we propose a latent-class probabilistic generative model, namely the spatial-temporal topic model (STM), to infer personal interests, the temporal and spatial patterns of topics/semantics embedded in users’ check-in activities, the interdependence between category-topic and sentiment-topic, and the correlation between sentimental tags and rating scores from users’ check-in and rating behaviors. Then, this learned knowledge is utilized to automatically annotate all POIs with both category-related and sentimental tags in a unified way. We conduct extensive experiments to evaluate the performance of the proposed STM on a real large-scale dataset. The experimental results show the superiority of our proposed STM, and we also observe that the real challenge of inferring category-related tags for POIs lies in the low-level ones of the hierarchy and that the challenge of predicting sentimental tags are those with neutral ratings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青青完成签到 ,获得积分10
1秒前
Chan0501发布了新的文献求助10
1秒前
昭昭完成签到,获得积分10
2秒前
SCI发布了新的文献求助10
2秒前
卓然完成签到,获得积分10
2秒前
李来仪发布了新的文献求助10
3秒前
4秒前
菲菲呀完成签到,获得积分10
4秒前
Rrr发布了新的文献求助10
4秒前
6秒前
陌路完成签到,获得积分10
6秒前
善学以致用应助leon采纳,获得30
6秒前
7秒前
斯文败类应助嘻嘻采纳,获得10
7秒前
科研通AI5应助小只bb采纳,获得30
7秒前
yyyy发布了新的文献求助10
7秒前
2023AKY完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
彭于晏应助惠惠采纳,获得10
10秒前
风魂剑主完成签到,获得积分10
11秒前
yryzst9899发布了新的文献求助10
11秒前
12秒前
飘逸小笼包完成签到,获得积分10
12秒前
科研小郑完成签到,获得积分10
12秒前
CipherSage应助熊boy采纳,获得10
12秒前
XXGG完成签到 ,获得积分10
13秒前
大个应助舒心赛凤采纳,获得10
13秒前
晨曦发布了新的文献求助10
14秒前
14秒前
ff0110完成签到,获得积分10
15秒前
星辰大海应助苹果萧采纳,获得10
15秒前
徐徐完成签到,获得积分10
15秒前
哈哈哈哈发布了新的文献求助10
16秒前
请叫我风吹麦浪应助yoon采纳,获得10
16秒前
认真的青柠完成签到,获得积分10
16秒前
bbanshan完成签到,获得积分10
16秒前
卫生纸发布了新的文献求助10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794