计算机科学
情报检索
等级制度
语义学(计算机科学)
注释
主题模型
班级(哲学)
概率逻辑
人工智能
兴趣点
自然语言处理
市场经济
经济
程序设计语言
作者
Tieke He,Hongzhi Yin,Zhenyu Chen,Xiaofang Zhou,Shazia Sadiq,Bin Luo
出处
期刊:ACM Transactions on Intelligent Systems and Technology
[Association for Computing Machinery]
日期:2016-07-25
卷期号:8 (1): 1-24
被引量:26
摘要
Semantic tags of points of interest (POIs) are a crucial prerequisite for location search, recommendation services, and data cleaning. However, most POIs in location-based social networks (LBSNs) are either tag-missing or tag-incomplete. This article aims to develop semantic annotation techniques to automatically infer tags for POIs. We first analyze two LBSN datasets and observe that there are two types of tags, category-related ones and sentimental ones, which have unique characteristics. Category-related tags are hierarchical, whereas sentimental ones are category-aware. All existing related work has adopted classification methods to predict high-level category-related tags in the hierarchy, but they cannot apply to infer either low-level category tags or sentimental ones. In light of this, we propose a latent-class probabilistic generative model, namely the spatial-temporal topic model (STM), to infer personal interests, the temporal and spatial patterns of topics/semantics embedded in users’ check-in activities, the interdependence between category-topic and sentiment-topic, and the correlation between sentimental tags and rating scores from users’ check-in and rating behaviors. Then, this learned knowledge is utilized to automatically annotate all POIs with both category-related and sentimental tags in a unified way. We conduct extensive experiments to evaluate the performance of the proposed STM on a real large-scale dataset. The experimental results show the superiority of our proposed STM, and we also observe that the real challenge of inferring category-related tags for POIs lies in the low-level ones of the hierarchy and that the challenge of predicting sentimental tags are those with neutral ratings.
科研通智能强力驱动
Strongly Powered by AbleSci AI