A Spatial-Temporal Topic Model for the Semantic Annotation of POIs in LBSNs

计算机科学 情报检索 等级制度 语义学(计算机科学) 注释 主题模型 班级(哲学) 概率逻辑 人工智能 兴趣点 自然语言处理 市场经济 经济 程序设计语言
作者
Tieke He,Hongzhi Yin,Zhenyu Chen,Xiaofang Zhou,Shazia Sadiq,Bin Luo
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:8 (1): 1-24 被引量:26
标识
DOI:10.1145/2905373
摘要

Semantic tags of points of interest (POIs) are a crucial prerequisite for location search, recommendation services, and data cleaning. However, most POIs in location-based social networks (LBSNs) are either tag-missing or tag-incomplete. This article aims to develop semantic annotation techniques to automatically infer tags for POIs. We first analyze two LBSN datasets and observe that there are two types of tags, category-related ones and sentimental ones, which have unique characteristics. Category-related tags are hierarchical, whereas sentimental ones are category-aware. All existing related work has adopted classification methods to predict high-level category-related tags in the hierarchy, but they cannot apply to infer either low-level category tags or sentimental ones. In light of this, we propose a latent-class probabilistic generative model, namely the spatial-temporal topic model (STM), to infer personal interests, the temporal and spatial patterns of topics/semantics embedded in users’ check-in activities, the interdependence between category-topic and sentiment-topic, and the correlation between sentimental tags and rating scores from users’ check-in and rating behaviors. Then, this learned knowledge is utilized to automatically annotate all POIs with both category-related and sentimental tags in a unified way. We conduct extensive experiments to evaluate the performance of the proposed STM on a real large-scale dataset. The experimental results show the superiority of our proposed STM, and we also observe that the real challenge of inferring category-related tags for POIs lies in the low-level ones of the hierarchy and that the challenge of predicting sentimental tags are those with neutral ratings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助llq采纳,获得10
刚刚
caffeine应助alefa采纳,获得20
1秒前
ssss发布了新的文献求助10
1秒前
溪鱼发布了新的文献求助20
1秒前
wangjuncheng关注了科研通微信公众号
1秒前
Noel应助mark采纳,获得10
2秒前
DrLin完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
5秒前
无敌暴龙学神完成签到,获得积分10
5秒前
5秒前
田様应助hzauhzau采纳,获得10
5秒前
5秒前
6秒前
寒冷的觅露完成签到,获得积分10
7秒前
温暖平文完成签到,获得积分10
8秒前
8秒前
枭源发布了新的文献求助10
8秒前
LCMLSM发布了新的文献求助10
8秒前
无限妙梦完成签到,获得积分10
8秒前
Charail发布了新的文献求助10
8秒前
yyds发布了新的文献求助10
9秒前
9秒前
炙热的桐完成签到,获得积分10
9秒前
wsh发布了新的文献求助10
9秒前
勤奋冬寒完成签到,获得积分10
9秒前
suoyu完成签到,获得积分10
10秒前
激流勇进wb完成签到 ,获得积分10
10秒前
天天快乐应助chenyuns采纳,获得10
11秒前
无所屌谓发布了新的文献求助10
11秒前
13秒前
彩色的雪青完成签到,获得积分10
13秒前
wyc发布了新的文献求助10
13秒前
研友_7ZebY8完成签到,获得积分10
13秒前
科研小锄头完成签到,获得积分10
14秒前
SHL完成签到 ,获得积分10
14秒前
14秒前
Michelle发布了新的文献求助10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167746
求助须知:如何正确求助?哪些是违规求助? 2819117
关于积分的说明 7925260
捐赠科研通 2479015
什么是DOI,文献DOI怎么找? 1320596
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443