We generalize the Vicsek model to describe the collective behaviour of polar circle swimmers with local alignment interactions. While the phase transition leading to collective motion in 2D (flocking) occurs at the same interaction to noise ratio as for linear swimmers, as we show, circular motion enhances the polarization in the ordered phase (enhanced flocking) and induces secondary instabilities leading to structure formation. Slow rotations result in phase separation whereas fast rotations generate patterns which consist of phase synchronized microflocks of controllable self-limited size. Our results defy the viewpoint that monofrequent rotations form a rather trivial extension of the Vicsek model and establish a generic route to pattern formation in chiral active matter with possible applications to control coarsening and to design rotating microflocks.