Graph embedding techniques, applications, and performance: A survey

计算机科学 嵌入 可扩展性 理论计算机科学 图嵌入 文字嵌入 Python(编程语言) 图形 机器学习 人工智能 程序设计语言 数据库
作者
Palash Goyal,Emilio Ferrara
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:151: 78-94 被引量:1681
标识
DOI:10.1016/j.knosys.2018.03.022
摘要

Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform the analysis. Recently, methods which use the representation of graph nodes in vector space have gained traction from the research community. In this survey, we provide a comprehensive and structured analysis of various graph embedding techniques proposed in the literature. We first introduce the embedding task and its challenges such as scalability, choice of dimensionality, and features to be preserved, and their possible solutions. We then present three categories of approaches based on factorization methods, random walks, and deep learning, with examples of representative algorithms in each category and analysis of their performance on various tasks. We evaluate these state-of-the-art methods on a few common datasets and compare their performance against one another. Our analysis concludes by suggesting some potential applications and future directions. We finally present the open-source Python library we developed, named GEM (Graph Embedding Methods, available at https://github.com/palash1992/GEM), which provides all presented algorithms within a unified interface to foster and facilitate research on the topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张北海应助nickel采纳,获得20
刚刚
zhu完成签到,获得积分10
1秒前
小马甲应助文献求助111采纳,获得10
2秒前
2秒前
2秒前
bkagyin应助NeoWu采纳,获得10
3秒前
4秒前
善学以致用应助mol采纳,获得10
5秒前
6秒前
搜集达人应助苏黎世采纳,获得10
6秒前
123完成签到,获得积分10
6秒前
6秒前
7秒前
yydragen应助galaxy采纳,获得30
7秒前
7秒前
Mae完成签到,获得积分10
8秒前
8秒前
yyy发布了新的文献求助10
8秒前
8秒前
孙福禄应助zhu采纳,获得10
8秒前
金戈完成签到,获得积分10
8秒前
9秒前
10秒前
JETSTREAM完成签到,获得积分10
11秒前
Mae发布了新的文献求助10
11秒前
水果完成签到,获得积分10
11秒前
11秒前
胡珈雯完成签到,获得积分10
12秒前
12秒前
孙燕应助自觉高跟鞋采纳,获得30
12秒前
木木发布了新的文献求助10
12秒前
12秒前
zhanjl13完成签到,获得积分10
12秒前
乐闻发布了新的文献求助10
13秒前
xue发布了新的文献求助20
13秒前
灰二发布了新的文献求助10
13秒前
hkf发布了新的文献求助10
13秒前
14秒前
caicai发布了新的文献求助10
14秒前
Lucas应助孙淼采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425