Graph embedding techniques, applications, and performance: A survey

计算机科学 嵌入 可扩展性 理论计算机科学 图嵌入 文字嵌入 Python(编程语言) 图形 机器学习 功率图分析 维数之咒 人工智能 程序设计语言 数据库
作者
Palash Goyal,Emilio Ferrara
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:151: 78-94 被引量:1153
标识
DOI:10.1016/j.knosys.2018.03.022
摘要

Graphs, such as social networks, word co-occurrence networks, and communication networks, occur naturally in various real-world applications. Analyzing them yields insight into the structure of society, language, and different patterns of communication. Many approaches have been proposed to perform the analysis. Recently, methods which use the representation of graph nodes in vector space have gained traction from the research community. In this survey, we provide a comprehensive and structured analysis of various graph embedding techniques proposed in the literature. We first introduce the embedding task and its challenges such as scalability, choice of dimensionality, and features to be preserved, and their possible solutions. We then present three categories of approaches based on factorization methods, random walks, and deep learning, with examples of representative algorithms in each category and analysis of their performance on various tasks. We evaluate these state-of-the-art methods on a few common datasets and compare their performance against one another. Our analysis concludes by suggesting some potential applications and future directions. We finally present the open-source Python library we developed, named GEM (Graph Embedding Methods, available at https://github.com/palash1992/GEM), which provides all presented algorithms within a unified interface to foster and facilitate research on the topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gro_ele完成签到,获得积分10
1秒前
维尼完成签到,获得积分10
1秒前
NexusExplorer应助离谱的月亮采纳,获得30
1秒前
2秒前
汉堡包应助liuwei采纳,获得10
2秒前
2秒前
稳重向南发布了新的文献求助10
3秒前
笨笨岂愈发布了新的文献求助20
3秒前
源来是洲董完成签到,获得积分10
3秒前
3秒前
99668完成签到,获得积分10
3秒前
一次性过完成签到,获得积分10
4秒前
Orange应助超级天川采纳,获得10
4秒前
yydsyyd发布了新的文献求助10
4秒前
Anivia2015完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
果汁橡皮糖完成签到,获得积分10
6秒前
yangya应助甜甜的曼荷采纳,获得10
6秒前
6秒前
drughunter009发布了新的文献求助10
7秒前
李爱国应助yao chen采纳,获得10
7秒前
栋dd完成签到 ,获得积分10
7秒前
张小北发布了新的文献求助10
7秒前
JuTou完成签到,获得积分10
8秒前
yongfeng完成签到,获得积分10
8秒前
9秒前
奋斗的凡完成签到 ,获得积分10
10秒前
xiang完成签到 ,获得积分10
10秒前
今后应助栗子芸采纳,获得10
10秒前
10秒前
柠---完成签到,获得积分10
10秒前
小芳发布了新的文献求助10
10秒前
AURORA丶发布了新的文献求助30
11秒前
11秒前
12秒前
z_8023完成签到,获得积分10
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311429
求助须知:如何正确求助?哪些是违规求助? 2944201
关于积分的说明 8517847
捐赠科研通 2619545
什么是DOI,文献DOI怎么找? 1432421
科研通“疑难数据库(出版商)”最低求助积分说明 664655
邀请新用户注册赠送积分活动 649869