嗜热菌
耐辐射球菌
水热
大肠杆菌
生物
DNA
DNA错配修复
分子生物学
DNA修复
生物化学
基因
作者
Michał Banasik,Anna Stanisławska‐Sachadyn,Ewa Hildebrandt,Paweł Sachadyn
标识
DOI:10.1016/j.jbiotec.2017.05.010
摘要
The mismatch binding protein MutS is responsible for the recognition of mispaired and unpaired bases, which is the initial step in DNA repair. Among the MutS proteins most extensively studied in vitro are those derived from Thermus thermophilus, Thermus aquaticus and Escherichia coli. Here, we present the first report on the in vitro examination of DNA mismatch binding activity of MutS protein from Deinococcus radiodurans and confront this with the properties of those from E. coli and T. thermophilus. The analyses which included mobility gel-shift assay, colorimetric and qPCR estimation of MutS-bound DNA clearly showed that D. radiodurans MutS exhibited much higher affinity towards mismatched DNA in vitro than its counterparts from E. coli and T. thermophilus. In addition, D. radiodurans MutS displayed a significantly higher specificity of DNA mismatch binding than the two other orthologues. The specificity expressed as the ratio of mismatched to fully complementary DNA bound reached over 4 and 20-fold higher values for D. radiodurans than for T. thermophilus and E. coli MutS, respectively. The results demonstrate mainly the biotechnological potential of D. radiodurans MutS but the in vitro characteristics of the MutS orthologues could reflect substantial differences in DNA mismatch binding activities existing in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI