成分数据
体力活动
多重共线性
统计推断
因果推理
统计
计量经济学
回归分析
心理学
医学
数学
物理疗法
作者
Dorothea Dumuid,Ty Stanford,Josep Antoni Martín Fernández,Željko Pedišić,Carol Maher,Lucy K. Lewis,Karel Hron,Peter T. Katzmarzyk,Jean‐Philippe Chaput,Mikael Fogelholm,Gang Hu,Estelle V. Lambert,José Maia,Olga L. Sarmiento,Martyn Standage,Tiago V. Barreira,Stephanie T. Broyles,Catrine Tudor‐Locke,Mark S. Tremblay,Tim Olds
标识
DOI:10.1177/0962280217710835
摘要
The health effects of daily activity behaviours (physical activity, sedentary time and sleep) are widely studied. While previous research has largely examined activity behaviours in isolation, recent studies have adjusted for multiple behaviours. However, the inclusion of all activity behaviours in traditional multivariate analyses has not been possible due to the perfect multicollinearity of 24-h time budget data. The ensuing lack of adjustment for known effects on the outcome undermines the validity of study findings. We describe a statistical approach that enables the inclusion of all daily activity behaviours, based on the principles of compositional data analysis. Using data from the International Study of Childhood Obesity, Lifestyle and the Environment, we demonstrate the application of compositional multiple linear regression to estimate adiposity from children's daily activity behaviours expressed as isometric log-ratio coordinates. We present a novel method for predicting change in a continuous outcome based on relative changes within a composition, and for calculating associated confidence intervals to allow for statistical inference. The compositional data analysis presented overcomes the lack of adjustment that has plagued traditional statistical methods in the field, and provides robust and reliable insights into the health effects of daily activity behaviours.
科研通智能强力驱动
Strongly Powered by AbleSci AI