Compositional data analysis for physical activity, sedentary time and sleep research

成分数据 体力活动 多重共线性 统计推断 因果推理 统计 计量经济学 回归分析 心理学 医学 数学 物理疗法
作者
Dorothea Dumuid,Ty Stanford,Josep Antoni Martín Fernández,Željko Pedišić,Carol Maher,Lucy K. Lewis,Karel Hron,Peter T. Katzmarzyk,Jean‐Philippe Chaput,Mikael Fogelholm,Gang Hu,Estelle V. Lambert,José Maia,Olga L. Sarmiento,Martyn Standage,Tiago V. Barreira,Stephanie T. Broyles,Catrine Tudor‐Locke,Mark S. Tremblay,Tim Olds
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:27 (12): 3726-3738 被引量:312
标识
DOI:10.1177/0962280217710835
摘要

The health effects of daily activity behaviours (physical activity, sedentary time and sleep) are widely studied. While previous research has largely examined activity behaviours in isolation, recent studies have adjusted for multiple behaviours. However, the inclusion of all activity behaviours in traditional multivariate analyses has not been possible due to the perfect multicollinearity of 24-h time budget data. The ensuing lack of adjustment for known effects on the outcome undermines the validity of study findings. We describe a statistical approach that enables the inclusion of all daily activity behaviours, based on the principles of compositional data analysis. Using data from the International Study of Childhood Obesity, Lifestyle and the Environment, we demonstrate the application of compositional multiple linear regression to estimate adiposity from children's daily activity behaviours expressed as isometric log-ratio coordinates. We present a novel method for predicting change in a continuous outcome based on relative changes within a composition, and for calculating associated confidence intervals to allow for statistical inference. The compositional data analysis presented overcomes the lack of adjustment that has plagued traditional statistical methods in the field, and provides robust and reliable insights into the health effects of daily activity behaviours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助Singularity采纳,获得10
1秒前
旋律完成签到,获得积分10
1秒前
Hello应助庞天兴采纳,获得10
2秒前
Youth发布了新的文献求助10
2秒前
关关发布了新的文献求助10
2秒前
JamesPei应助sa采纳,获得10
2秒前
wanci应助娃娃菜采纳,获得10
2秒前
3秒前
慕青应助单纯代萱采纳,获得10
4秒前
谷歌狗发布了新的文献求助10
4秒前
5秒前
6秒前
香蕉觅云应助junyang采纳,获得10
6秒前
忧郁的凝竹完成签到 ,获得积分10
7秒前
鲤鱼眼睛关注了科研通微信公众号
8秒前
烟花应助小名余土土采纳,获得10
8秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
10秒前
KWang应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
Judy发布了新的文献求助10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
儒雅冰岚发布了新的文献求助10
12秒前
充电宝应助Youth采纳,获得10
12秒前
南瓜猪猪头完成签到 ,获得积分10
12秒前
杨杨发布了新的文献求助10
13秒前
卿总未梦发布了新的文献求助10
14秒前
寻道图强应助xin采纳,获得30
14秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055748
求助须知:如何正确求助?哪些是违规求助? 2712398
关于积分的说明 7431409
捐赠科研通 2357400
什么是DOI,文献DOI怎么找? 1248780
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596163