Compositional data analysis for physical activity, sedentary time and sleep research

成分数据 体力活动 多重共线性 统计推断 因果推理 统计 计量经济学 推论 回归分析 心理学 医学 计算机科学 数学 物理疗法 人工智能
作者
Dorothea Dumuid,Ty Stanford,Josep Antoni Martín Fernández,Željko Pedišić,Carol Maher,Lucy K. Lewis,Karel Hron,Peter T. Katzmarzyk,Jean‐Philippe Chaput,Mikael Fogelholm,Gang Hu,Estelle V. Lambert,José Maia,Olga L. Sarmiento,Martyn Standage,Tiago V. Barreira,Stephanie T. Broyles,Catrine Tudor‐Locke,Mark S. Tremblay,Tim Olds
出处
期刊:Statistical Methods in Medical Research [SAGE Publishing]
卷期号:27 (12): 3726-3738 被引量:349
标识
DOI:10.1177/0962280217710835
摘要

The health effects of daily activity behaviours (physical activity, sedentary time and sleep) are widely studied. While previous research has largely examined activity behaviours in isolation, recent studies have adjusted for multiple behaviours. However, the inclusion of all activity behaviours in traditional multivariate analyses has not been possible due to the perfect multicollinearity of 24-h time budget data. The ensuing lack of adjustment for known effects on the outcome undermines the validity of study findings. We describe a statistical approach that enables the inclusion of all daily activity behaviours, based on the principles of compositional data analysis. Using data from the International Study of Childhood Obesity, Lifestyle and the Environment, we demonstrate the application of compositional multiple linear regression to estimate adiposity from children's daily activity behaviours expressed as isometric log-ratio coordinates. We present a novel method for predicting change in a continuous outcome based on relative changes within a composition, and for calculating associated confidence intervals to allow for statistical inference. The compositional data analysis presented overcomes the lack of adjustment that has plagued traditional statistical methods in the field, and provides robust and reliable insights into the health effects of daily activity behaviours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
xiaomili发布了新的文献求助10
3秒前
4秒前
大个应助caiyuedong采纳,获得10
6秒前
6秒前
儒雅HR完成签到,获得积分10
6秒前
7秒前
鳗鱼友灵发布了新的文献求助10
7秒前
几米杨完成签到,获得积分10
7秒前
所所应助o10采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
柯一一应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
柯一一应助科研通管家采纳,获得10
8秒前
聪明白秋应助科研通管家采纳,获得20
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
FashionBoy应助赵程程采纳,获得10
9秒前
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
柯一一应助科研通管家采纳,获得10
9秒前
Susan发布了新的文献求助10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
YiWei发布了新的文献求助10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502597
关于积分的说明 11109039
捐赠科研通 3233376
什么是DOI,文献DOI怎么找? 1787315
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122