Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps

土地覆盖 图像分辨率 遥感 时间分辨率 像素 空间分析 计算机科学 地理 土地利用 计算机视觉 量子力学 物理 工程类 土木工程
作者
Xiaodong Li,Feng Ling,Giles M. Foody,Yong Ge,Yihang Zhang,Youwei Du
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:196: 293-311 被引量:95
标识
DOI:10.1016/j.rse.2017.05.011
摘要

Studies of land cover dynamics would benefit greatly from the generation of land cover maps at both fine spatial and temporal resolutions. Fine spatial resolution images are usually acquired relatively infrequently, whereas coarse spatial resolution images may be acquired with a high repetition rate but may not capture the spatial detail of the land cover mosaic of the region of interest. Traditional image spatial–temporal fusion methods focus on the blending of pixel spectra reflectance values and do not directly provide land cover maps or information on land cover dynamics. In this research, a novel Spatial–Temporal remotely sensed Images and land cover Maps Fusion Model (STIMFM) is proposed to produce land cover maps at both fine spatial and temporal resolutions using a series of coarse spatial resolution images together with a few fine spatial resolution land cover maps that pre- and post-date the series of coarse spatial resolution images. STIMFM integrates both the spatial and temporal dependences of fine spatial resolution pixels and outputs a series of fine spatial–temporal resolution land cover maps instead of reflectance images, which can be used directly for studies of land cover dynamics. Here, three experiments based on simulated and real remotely sensed images were undertaken to evaluate the STIMFM for studies of land cover change. These experiments included comparative assessment of methods based on single-date image such as the super-resolution approaches (e.g., pixel swapping-based super-resolution mapping) and the state-of-the-art spatial–temporal fusion approach that used the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Flexible Spatiotemporal DAta Fusion model (FSDAF) to predict the fine-resolution images, in which the maximum likelihood classifier and the automated land cover updating approach based on integrated change detection and classification method were then applied to generate the fine-resolution land cover maps. Results show that the methods based on single-date image failed to predict the pixels of changed and unchanged land cover with high accuracy. The land cover maps that were obtained by classification of the reflectance images outputted from ESTARFM and FSDAF contained substantial misclassification, and the classification accuracy was lower for pixels of changed land cover than for pixels of unchanged land cover. In addition, STIMFM predicted fine spatial–temporal resolution land cover maps from a series of Landsat images and a few Google Earth images, to which ESTARFM and FSDAF that require correlation in reflectance bands in coarse and fine images cannot be applied. Notably, STIMFM generated higher accuracy for pixels of both changed and unchanged land cover in comparison with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助子铭采纳,获得10
刚刚
爱听歌的钢铁侠完成签到,获得积分10
1秒前
科研通AI5应助辣辣采纳,获得10
2秒前
2秒前
科研通AI5应助LHL采纳,获得10
3秒前
哇哈哈完成签到 ,获得积分10
3秒前
5秒前
简单代亦发布了新的文献求助10
5秒前
ZD发布了新的文献求助10
6秒前
研友_EZ1GJL完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
9秒前
9秒前
蓝荆发布了新的文献求助10
10秒前
LHL完成签到,获得积分10
10秒前
11秒前
研友_VZG7GZ应助郑雪红采纳,获得30
11秒前
简单代亦完成签到,获得积分20
11秒前
sparse_penn完成签到,获得积分10
11秒前
仰勒完成签到 ,获得积分10
12秒前
Silence发布了新的文献求助10
13秒前
Jasen发布了新的文献求助30
13秒前
13秒前
14秒前
阿航发布了新的文献求助10
14秒前
于祈发布了新的文献求助10
14秒前
羔羊发布了新的文献求助10
14秒前
15秒前
李丽完成签到,获得积分10
15秒前
SciGPT应助初衷采纳,获得10
16秒前
炙热的平灵完成签到,获得积分10
17秒前
17秒前
黄飚完成签到,获得积分10
18秒前
19秒前
Pluto5209完成签到 ,获得积分20
19秒前
wenwj9发布了新的文献求助10
19秒前
zzz发布了新的文献求助30
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542598
求助须知:如何正确求助?哪些是违规求助? 3119973
关于积分的说明 9341143
捐赠科研通 2818043
什么是DOI,文献DOI怎么找? 1549287
邀请新用户注册赠送积分活动 722093
科研通“疑难数据库(出版商)”最低求助积分说明 712928