已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps

土地覆盖 图像分辨率 遥感 时间分辨率 像素 封面(代数) 空间变异性 计算机科学 地理 土地利用 计算机视觉 数学 光学 生态学 工程类 物理 统计 生物 机械工程
作者
Xiaodong Li,Feng Ling,Giles M. Foody,Yong Ge,Yihang Zhang,Yun Du
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:196: 293-311 被引量:112
标识
DOI:10.1016/j.rse.2017.05.011
摘要

Studies of land cover dynamics would benefit greatly from the generation of land cover maps at both fine spatial and temporal resolutions. Fine spatial resolution images are usually acquired relatively infrequently, whereas coarse spatial resolution images may be acquired with a high repetition rate but may not capture the spatial detail of the land cover mosaic of the region of interest. Traditional image spatial–temporal fusion methods focus on the blending of pixel spectra reflectance values and do not directly provide land cover maps or information on land cover dynamics. In this research, a novel Spatial–Temporal remotely sensed Images and land cover Maps Fusion Model (STIMFM) is proposed to produce land cover maps at both fine spatial and temporal resolutions using a series of coarse spatial resolution images together with a few fine spatial resolution land cover maps that pre- and post-date the series of coarse spatial resolution images. STIMFM integrates both the spatial and temporal dependences of fine spatial resolution pixels and outputs a series of fine spatial–temporal resolution land cover maps instead of reflectance images, which can be used directly for studies of land cover dynamics. Here, three experiments based on simulated and real remotely sensed images were undertaken to evaluate the STIMFM for studies of land cover change. These experiments included comparative assessment of methods based on single-date image such as the super-resolution approaches (e.g., pixel swapping-based super-resolution mapping) and the state-of-the-art spatial–temporal fusion approach that used the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Flexible Spatiotemporal DAta Fusion model (FSDAF) to predict the fine-resolution images, in which the maximum likelihood classifier and the automated land cover updating approach based on integrated change detection and classification method were then applied to generate the fine-resolution land cover maps. Results show that the methods based on single-date image failed to predict the pixels of changed and unchanged land cover with high accuracy. The land cover maps that were obtained by classification of the reflectance images outputted from ESTARFM and FSDAF contained substantial misclassification, and the classification accuracy was lower for pixels of changed land cover than for pixels of unchanged land cover. In addition, STIMFM predicted fine spatial–temporal resolution land cover maps from a series of Landsat images and a few Google Earth images, to which ESTARFM and FSDAF that require correlation in reflectance bands in coarse and fine images cannot be applied. Notably, STIMFM generated higher accuracy for pixels of both changed and unchanged land cover in comparison with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
共享精神应助白叶采纳,获得10
2秒前
3秒前
3秒前
走走发布了新的文献求助10
4秒前
MyAI完成签到,获得积分10
4秒前
5秒前
6秒前
siyi完成签到,获得积分10
6秒前
yy发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
ttkx完成签到,获得积分10
8秒前
小番茄完成签到 ,获得积分10
8秒前
模糊老师完成签到,获得积分10
8秒前
熊啊发布了新的文献求助10
9秒前
liu发布了新的文献求助50
9秒前
龙韵完成签到 ,获得积分10
10秒前
李琼琼发布了新的文献求助10
11秒前
哇哇卡哇发布了新的文献求助30
12秒前
工大搬砖战神完成签到,获得积分10
12秒前
12秒前
CodeCraft应助卡卡罗特采纳,获得10
12秒前
15秒前
17秒前
无限的绿真完成签到,获得积分10
17秒前
鲸落Oo发布了新的文献求助10
19秒前
20秒前
关我屁事完成签到 ,获得积分10
20秒前
叮当完成签到 ,获得积分10
21秒前
21秒前
22秒前
22秒前
liu完成签到,获得积分10
23秒前
23秒前
小悦子完成签到,获得积分10
24秒前
kky完成签到,获得积分10
24秒前
搜集达人应助差不多先生采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396