Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps

土地覆盖 图像分辨率 遥感 时间分辨率 像素 空间分析 计算机科学 地理 土地利用 计算机视觉 量子力学 物理 工程类 土木工程
作者
Xiaodong Li,Feng Ling,Giles M. Foody,Yong Ge,Yihang Zhang,Youwei Du
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:196: 293-311 被引量:95
标识
DOI:10.1016/j.rse.2017.05.011
摘要

Studies of land cover dynamics would benefit greatly from the generation of land cover maps at both fine spatial and temporal resolutions. Fine spatial resolution images are usually acquired relatively infrequently, whereas coarse spatial resolution images may be acquired with a high repetition rate but may not capture the spatial detail of the land cover mosaic of the region of interest. Traditional image spatial–temporal fusion methods focus on the blending of pixel spectra reflectance values and do not directly provide land cover maps or information on land cover dynamics. In this research, a novel Spatial–Temporal remotely sensed Images and land cover Maps Fusion Model (STIMFM) is proposed to produce land cover maps at both fine spatial and temporal resolutions using a series of coarse spatial resolution images together with a few fine spatial resolution land cover maps that pre- and post-date the series of coarse spatial resolution images. STIMFM integrates both the spatial and temporal dependences of fine spatial resolution pixels and outputs a series of fine spatial–temporal resolution land cover maps instead of reflectance images, which can be used directly for studies of land cover dynamics. Here, three experiments based on simulated and real remotely sensed images were undertaken to evaluate the STIMFM for studies of land cover change. These experiments included comparative assessment of methods based on single-date image such as the super-resolution approaches (e.g., pixel swapping-based super-resolution mapping) and the state-of-the-art spatial–temporal fusion approach that used the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Flexible Spatiotemporal DAta Fusion model (FSDAF) to predict the fine-resolution images, in which the maximum likelihood classifier and the automated land cover updating approach based on integrated change detection and classification method were then applied to generate the fine-resolution land cover maps. Results show that the methods based on single-date image failed to predict the pixels of changed and unchanged land cover with high accuracy. The land cover maps that were obtained by classification of the reflectance images outputted from ESTARFM and FSDAF contained substantial misclassification, and the classification accuracy was lower for pixels of changed land cover than for pixels of unchanged land cover. In addition, STIMFM predicted fine spatial–temporal resolution land cover maps from a series of Landsat images and a few Google Earth images, to which ESTARFM and FSDAF that require correlation in reflectance bands in coarse and fine images cannot be applied. Notably, STIMFM generated higher accuracy for pixels of both changed and unchanged land cover in comparison with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yc完成签到,获得积分20
刚刚
丢硬币的小孩完成签到,获得积分10
2秒前
落寞白曼完成签到,获得积分10
2秒前
fengmy完成签到,获得积分10
3秒前
活力思枫完成签到,获得积分10
3秒前
Scarlett完成签到 ,获得积分10
5秒前
xinyao完成签到,获得积分20
5秒前
shime完成签到,获得积分10
6秒前
幻月完成签到,获得积分10
6秒前
瓶子完成签到,获得积分10
7秒前
科研通AI5应助小花采纳,获得10
7秒前
luogan完成签到,获得积分10
8秒前
xjyyy完成签到 ,获得积分10
9秒前
11秒前
瓶子发布了新的文献求助10
13秒前
Licyan完成签到,获得积分10
14秒前
ydk完成签到,获得积分10
15秒前
aa1212121完成签到,获得积分10
15秒前
16秒前
rrrick完成签到,获得积分10
16秒前
yc发布了新的文献求助10
17秒前
qinghe完成签到 ,获得积分10
18秒前
20秒前
开朗向真完成签到,获得积分10
21秒前
HarryYang完成签到,获得积分10
21秒前
Cheng完成签到 ,获得积分10
21秒前
SQL完成签到 ,获得积分10
22秒前
三千年的成长完成签到 ,获得积分10
22秒前
动听元彤发布了新的文献求助10
22秒前
狂野书易完成签到,获得积分10
22秒前
小花发布了新的文献求助10
24秒前
文艺的初南完成签到 ,获得积分10
25秒前
李123完成签到,获得积分10
25秒前
遇上就这样吧应助summer采纳,获得10
26秒前
xiaxiao应助xinyao采纳,获得100
26秒前
廉凌波完成签到,获得积分10
26秒前
南溪完成签到,获得积分10
26秒前
ntxlks完成签到,获得积分10
26秒前
无花果应助冷傲凝琴采纳,获得10
28秒前
Yurrrrt完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761094
求助须知:如何正确求助?哪些是违规求助? 3305015
关于积分的说明 10131717
捐赠科研通 3018946
什么是DOI,文献DOI怎么找? 1657871
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754604