Nuclear Membrane-Targeted Gold Nanoparticles Inhibit Cancer Cell Migration and Invasion

拉明 核板 癌细胞 细胞 细胞膜 细胞迁移 细胞核 胶体金 核膜 内膜 核心 细胞生物学 化学 核孔 生物物理学 材料科学 癌症 核蛋白 生物 纳米技术 生物化学 纳米颗粒 基因 转录因子 遗传学
作者
Moustafa R. K. Ali,Yue Wu,Deepraj Ghosh,H. Brian,Kuangcai Chen,Michelle Dawson,Ning Fang,Todd Sulchek,Mostafa A. El‐Sayed
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (4): 3716-3726 被引量:150
标识
DOI:10.1021/acsnano.6b08345
摘要

Most cancer patients die from metastasis. Recent studies have shown that gold nanoparticles (AuNPs) can slow down the migration/invasion speed of cancer cells and suppress metastasis. Since nuclear stiffness of the cell largely decreases cell migration, our hypothesis is that targeting AuNPs to the cell nucleus region could enhance nuclear stiffness, and therefore inhibit cell migration and invasion. Our results showed that upon nuclear targeting of AuNPs, the ovarian cancer cell motilities decrease significantly, compared with nontargeted AuNPs. Furthermore, using atomic force microscopy, we observed an enhanced cell nuclear stiffness. In order to understand the mechanism of cancer cell migration/invasion inhibition, the exact locations of the targeted AuNPs were clearly imaged using a high-resolution three-dimensional imaging microscope, which showed that the AuNPs were trapped at the nuclear membrane. In addition, we observed a greatly increased expression level of lamin A/C protein, which is located in the inner nuclear membrane and functions as a structural component of the nuclear lamina to enhance nuclear stiffness. We propose that the AuNPs that are trapped at the nuclear membrane both (1) add to the mechanical stiffness of the nucleus and (2) stimulate the overexpression of lamin A/C located around the nuclear membrane, thus increasing nuclear stiffness and slowing cancer cell migration and invasion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21_xxrr发布了新的文献求助50
刚刚
vegetable完成签到,获得积分10
1秒前
2秒前
www发布了新的文献求助10
3秒前
华仔应助Vv采纳,获得10
3秒前
似锦发布了新的文献求助20
3秒前
香蕉觅云应助唠叨的又菡采纳,获得10
5秒前
蔡以静完成签到,获得积分10
6秒前
承一发布了新的文献求助10
6秒前
科研科发布了新的文献求助30
6秒前
科研通AI6应助MC番薯采纳,获得10
7秒前
七里香发布了新的文献求助10
7秒前
Dr.Wang发布了新的文献求助10
7秒前
7秒前
miaomiao完成签到,获得积分10
8秒前
魁梧的曼易完成签到,获得积分10
8秒前
www完成签到 ,获得积分10
10秒前
lin发布了新的文献求助60
11秒前
香蕉觅云应助Dr.Wang采纳,获得10
12秒前
12秒前
15秒前
21_xxrr完成签到,获得积分10
17秒前
和谐青柏发布了新的文献求助10
17秒前
吴先生完成签到 ,获得积分10
18秒前
18秒前
hsyssb发布了新的文献求助150
19秒前
19秒前
langping完成签到,获得积分10
19秒前
19秒前
侯侯完成签到,获得积分10
20秒前
22秒前
Bminor完成签到,获得积分10
22秒前
23秒前
23秒前
吴先生关注了科研通微信公众号
23秒前
gzwhh发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
czz发布了新的文献求助10
24秒前
Kongkong发布了新的文献求助10
24秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501