Building Extraction from Remotely Sensed Images by Integrating Saliency Cue

计算机科学 人工智能 概率逻辑 水准点(测量) 条件随机场 特征提取 计算机视觉 目标检测 模式识别(心理学) 分割 影子(心理学) 假阳性悖论 大地测量学 心理学 地理 心理治疗师
作者
Er Li,Shibiao Xu,Weiliang Meng,Xiaopeng Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 906-919 被引量:62
标识
DOI:10.1109/jstars.2016.2603184
摘要

In this paper, we propose a novel two-step building extraction method from remote sensing images by integrating saliency cue. We first utilize classical features such as shadow, color, and shape to find out initial building candidates. A fully connected conditional random field model is introduced in this step to ensure that most of the buildings are incorporated. While it is hard to further remove the mislabled rooftops from the building candidates by only using classical features, we adopt saliency cue as a new feature to determine whether there is a rooftop in each segmentation patch obtained from previous step. The basic idea behind the use of saliency information is that rooftops are more likely to attract visual attention than surrounding objects. Based on a specifically designed saliency estimation algorithm for building object, we extract saliency cue in the local region of each building candidate, which is integrated into a probabilistic model to get the final building extraction result. We show that the saliency cue can provide an efficient probabilistic indication of the presence of rooftops, which helps to reduce false positives while without increasing false negatives at the same time. Experimental results on two benchmark datasets highlight the advantages of the integration of saliency cue and demonstrate that the proposed method outperforms the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助暗夜暗夜采纳,获得10
1秒前
小李呀完成签到,获得积分10
1秒前
科目三应助123采纳,获得10
2秒前
阿曼尼完成签到 ,获得积分10
2秒前
21发布了新的文献求助30
3秒前
3秒前
5秒前
西贝完成签到,获得积分20
7秒前
7秒前
7秒前
蛋挞发布了新的文献求助30
10秒前
ALEX完成签到,获得积分10
10秒前
钟志成发布了新的文献求助10
10秒前
11秒前
jry完成签到 ,获得积分10
12秒前
buerger发布了新的文献求助10
12秒前
乐乐应助呦吼。。。采纳,获得10
12秒前
12秒前
打打应助火焰向上采纳,获得10
13秒前
西贝发布了新的文献求助10
14秒前
1234完成签到 ,获得积分10
15秒前
科目三应助lifesci_ming采纳,获得10
17秒前
17秒前
不在乎过发布了新的文献求助10
17秒前
18秒前
小艾发布了新的文献求助30
19秒前
拒收病婿完成签到,获得积分20
21秒前
彭于彦祖应助猪猪采纳,获得30
23秒前
24秒前
25秒前
25秒前
华仔应助西贝采纳,获得10
26秒前
liuyan1005完成签到,获得积分10
27秒前
Menand完成签到,获得积分10
27秒前
天易发布了新的文献求助10
29秒前
30秒前
30秒前
31秒前
潇公子完成签到,获得积分10
32秒前
打打应助羊洋洋采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143795
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814544
捐赠科研通 2451315
什么是DOI,文献DOI怎么找? 1304413
科研通“疑难数据库(出版商)”最低求助积分说明 627230
版权声明 601419