番茄红素
细胞凋亡
神经保护
药理学
抗氧化剂
神经科学
脊髓损伤
生物化学
医学
生物
脊髓
作者
Wei Hu,Hongbo Wang,Zhongfan Liu,Yanlu Liu,Rong Wang,Xiao Luo,Yifei Huang
标识
DOI:10.1016/j.neulet.2017.02.004
摘要
Oxidative damage induced-mitochondrial dysfunction and apoptosis has been widely studied in spinal cord injury (SCI). Lycopene, a polyunsaturated hydrocarbon, has the highest antioxidant capacity compared to the other carotenoids. However, the role of lycopene in SCI is unknown. In the present study, we evaluated the antioxidant effects of lycopene on mitochondrial dysfunction and apoptosis following T10 contusion SCI in rats. The rats were randomized into 5 groups: the sham group, the SCI group and the SCI pre-treated with lycopene (5, 10, or 20 mg/kg) group. The SCI group showed increased malondialdehyde (MDA) content, decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) ability, which indicated that SCI could induce oxidative damage. What’s more, the SCI group showed decreased mRNA expression of cytochrome b and mitochondrial transcription factor A (Tfam), and decreased mitochondrial membrane potential (ΔYm), which indicated that SCI could induce mitochondrial dysfunction. Besides, the SCI group showed decreased protein expression of bcl-2 and mitochondrial cytochrome C, increased protein expression of cytosolic cytochrome C, cleaved caspase-9, cleaved caspase-3 and bax, and increased TUNEL-positive cell numbers, which indicated that SCI could induce cell apoptosis. Fortunately, the lycopene treatment significantly ameliorated oxidative damage, mitochondrial dysfunction and cell apoptosis via the reversion of those parameters described above in the dose of lycopene of 10 and 20 mg/kg. In addition, lycopene significantly ameliorated the hind limb motor disturbances in the SCI + lyco10 group and the SCI + lyco20 group compared with the SCI group. These results suggested that lycopene administration could improve total antioxidant status and might have neuroprotective effects on SCI.
科研通智能强力驱动
Strongly Powered by AbleSci AI