超精细结构
太赫兹辐射
超材料
等离子体子
多光谱图像
材料科学
亚稳态
电磁感应透明
光电子学
光学
原子物理学
物理
计算机科学
量子力学
计算机视觉
作者
Shengyan Yang,Xiaoxiang Xia,Zhe Liu,E Yiwen,Yujin Wang,Chengchun Tang,Wuxia Li,Junjie Li,Li Wang,Changzhi Gu
标识
DOI:10.1088/0953-8984/28/44/445002
摘要
We experimentally and theoretically demonstrated an approach to achieve multispectral plasmon-induced transparency (PIT) by utilizing meta-molecules that consist of hyperfine terahertz meta-atoms. The feature size of such hyperfine meta-atoms is 400 nm, which is one order smaller than that of normal terahertz metamaterials. The hyperfine meta-atoms with close eigenfrequencies and narrow resonant responses introduce different metastable energy levels, which makes the multispectral PIT possible. In the triple PIT system, the slow light effect is further confirmed as the effective group delay at three transmission windows can reach 7.3 ps, 7.4 ps and 4.5 ps, respectively. Precisely controllable manipulation of the PIT peaks in such hyperfine meta-molecules was also proven. The new hyperfine planar design is not only suitable for high-integration applications, but also exhibits significant slow light effect, which has great potential in advanced multichannel optical information processing. Moreover, it reveals the possibility to construct hyperfine N-level energy systems by artificial hyperfine plasmonic structures, which brings a significant prospect for applications on miniaturized plasmonic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI