清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

GOLabeler: Improving Sequence-based Large-scale Protein Function Prediction by Learning to Rank

计算机科学 蛋白质功能预测 基因本体论 人工智能 机器学习 UniProt公司 蛋白质测序 秩(图论) 计算生物学 序列(生物学) 功能(生物学) 肽序列 蛋白质功能 生物 基因 遗传学 数学 组合数学 基因表达
作者
Ronghui You,Zihan Zhang,Yi Xiong,Fengzhu Sun,Hiroshi Mamitsuka,Shangfeng Zhu
标识
DOI:10.1101/145763
摘要

Abstract Motivation : Gene Ontology (GO) has been widely used to annotate functions of proteins and understand their biological roles. Currently only ¡1% of more than 70 million proteins in UniProtKB have experimental GO annotations, implying the strong necessity of automated function prediction (AFP) of proteins, where AFP is a hard multi-label classification problem due to one protein with a diverse number of GO terms. Most of these proteins have only sequences as input information, indicating the importance of sequence-based AFP (SAFP: sequences are the only input). Furthermore, homology-based SAFP tools are competitive in AFP competitions, while they do not necessarily work well for so-called difficult proteins, which have ¡60% sequence identity to proteins with annotations already. Thus, the vital and challenging problem now is to develop a method for SAFP, particularly for difficult proteins. Methods : The key of this method is to extract not only homology information but also diverse, deep-rooted information/evidence from sequence inputs and integrate them into a predictor in an efficient and also effective manner. We propose GOLabeler, which integrates five component classifiers, trained from different features, including GO term frequency, sequence alignment, amino acid trigram, domains and motifs, and biophysical properties, etc., in the framework of learning to rank (LTR), a new paradigm of machine learning, especially powerful for multi-label classification. Results : The empirical results obtained by examining GOLabeler extensively and thoroughly by using large-scale datasets revealed numerous favorable aspects of GOLabeler, including significant performance advantage over state-of-the-art AFP methods. Contact : zhusf@fudan.edu.cn
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HOPKINSON完成签到,获得积分20
2秒前
小灰灰完成签到 ,获得积分10
7秒前
爱学习的婷完成签到 ,获得积分10
15秒前
陈月婷完成签到 ,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
imi完成签到 ,获得积分0
1分钟前
mm完成签到,获得积分10
1分钟前
kuyi完成签到 ,获得积分10
1分钟前
Guo完成签到 ,获得积分10
1分钟前
mengli完成签到 ,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
彩色的芷容完成签到 ,获得积分10
3分钟前
叶YE发布了新的文献求助30
4分钟前
科目三应助叶YE采纳,获得10
4分钟前
重要铃铛完成签到 ,获得积分10
4分钟前
叶YE完成签到,获得积分10
4分钟前
Arthur完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671300
求助须知:如何正确求助?哪些是违规求助? 3228149
关于积分的说明 9778643
捐赠科研通 2938406
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736003