已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate and efficient seismic data interpolation using FK-curvelet transform

插值(计算机图形学) 曲线波变换 计算机科学 算法 自动化 投影(关系代数) 领域(数学分析) 人工智能 数据挖掘 图像(数学) 数学 小波变换 工程类 小波 机械工程 数学分析
作者
Benfeng Wang,Wenkai Lu
出处
期刊:International Geophysical Conference, Qingdao, China, 17-20 April 2017 被引量:1
标识
DOI:10.1190/igc2017-073
摘要

PreviousNext No AccessInternational Geophysical Conference, Qingdao, China, 17-20 April 2017Accurate and efficient seismic data interpolation using FK-curvelet transformAuthors: Benfeng Wang*Wenkai LuBenfeng Wang*Easysignal group, State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua UniversitySearch for more papers by this author and Wenkai LuEasysignal group, State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua UniversitySearch for more papers by this authorhttps://doi.org/10.1190/IGC2017-073 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract The data irregularity caused by acquisition environment constraints or bad traces elimination can decrease the performances of the following multi-channel algorithms, though some of them can overcome the irregularity defects. Therefore, accurate interpolation to provide necessarily complete data becomes a pre-requisite, but its wide application is constrained because its large computational time for huge data volume, especially in 3D explorations. For accurate and efficient seismic data interpolation, the projection onto convex sets (POCS) based interpolation method using frequency-wavenumber (FK) curvelet transform is proposed. The fact that the complex-valued principle frequency components can characterize its original signal with a high accuracy, but its size is at least halved which can help improve the interpolation efficiency. The energy of the observed seismic data is more focused in the FK domain, and curvelet coefficients can be sparser if curvelet transform is performed on the FK domain data, which can help enhance the interpolation accuracy. The performances of the POCS-based methods using complex-valued curvelet transform in the time-space (TX) domain, the principle frequency-space (FX) domain and the FK domain are compared and numerical examples demonstrate the validity and effectiveness of the proposed method. With less computational time, the proposed method can achieve better interpolation results. Keywords: interpolation, algorithm, acquisition, 3DPermalink: https://doi.org/10.1190/IGC2017-073FiguresReferencesRelatedDetailsCited byAdapting the residual dense network for seismic data denoising and upscalingRongqian Wang, Ruixuan Zhang, Chenglong Bao, Lingyun Qiu, and Dinghui Yang16 June 2022 | GEOPHYSICS, Vol. 87, No. 4 International Geophysical Conference, Qingdao, China, 17-20 April 2017ISSN (online):2159-6832Copyright: 2017 Pages: 1525 publication data© 2017 Published in electronic format with permission by the Society of Exploration Geophysicists and Chinese Geophysical SocietyPublisher:Society of Exploration Geophysicists HistoryPublished Online: 31 May 2017 CITATION INFORMATION Benfeng Wang* and Wenkai Lu, (2017), "Accurate and efficient seismic data interpolation using FK-curvelet transform," SEG Global Meeting Abstracts : 280-283. https://doi.org/10.1190/IGC2017-073 Plain-Language Summary Keywordsinterpolationalgorithmacquisition3DPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
索骥发布了新的文献求助30
1秒前
2秒前
2秒前
3秒前
4秒前
英姑应助Ericlee采纳,获得10
5秒前
borkyy发布了新的文献求助10
6秒前
6秒前
harmony完成签到 ,获得积分10
7秒前
索骥完成签到,获得积分10
7秒前
哇哈哈完成签到,获得积分10
8秒前
8秒前
wanci发布了新的文献求助10
9秒前
9秒前
11秒前
乔达摩悉达多完成签到 ,获得积分10
11秒前
这个世界有我真好完成签到,获得积分10
12秒前
sho完成签到,获得积分10
18秒前
20秒前
Ava应助shuishui采纳,获得10
23秒前
郑鹏飞发布了新的文献求助10
23秒前
SciGPT应助玩伴zz采纳,获得10
23秒前
Darliza完成签到,获得积分10
23秒前
27秒前
亓雅丽完成签到,获得积分10
28秒前
wanci应助哇哈哈采纳,获得10
28秒前
neechine发布了新的文献求助10
28秒前
Darliza发布了新的文献求助10
29秒前
orixero应助木棉采纳,获得10
30秒前
顾矜应助郑鹏飞采纳,获得10
31秒前
玩伴zz给玩伴zz的求助进行了留言
31秒前
zcbb完成签到,获得积分10
31秒前
32秒前
脑洞疼应助天道酬勤采纳,获得10
34秒前
LXL完成签到,获得积分10
41秒前
852应助KEHUGE采纳,获得10
43秒前
Serein完成签到,获得积分10
43秒前
诚心绿兰完成签到 ,获得积分10
44秒前
44秒前
44秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248529
求助须知:如何正确求助?哪些是违规求助? 2891960
关于积分的说明 8269265
捐赠科研通 2559983
什么是DOI,文献DOI怎么找? 1388824
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798