Fundamental Mechanisms of Solvent Decomposition Involved in Solid-Electrolyte Interphase Formation in Sodium Ion Batteries

电解质 碳酸乙烯酯 分子 溶剂 分解 无机化学 二聚体 化学 有机化学 电极 物理化学
作者
Hemant Kumar,Eric Detsi,Daniel P. Abraham,Vivek B. Shenoy
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:28 (24): 8930-8941 被引量:128
标识
DOI:10.1021/acs.chemmater.6b03403
摘要

Prolonged decomposition of electrolytes forming a thick and unstable solid-electrolyte interphase (SEI) continues to be a major bottleneck in designing sodium-ion batteries (SIBs). We have carried out quantum chemistry simulations to investigate the fundamental mechanisms of reduction-induced decomposition of electrolyte solvents in the vicinity of a sodium ion. Kinetics and thermodynamics of several reaction pathways for one- and two-electron reduction of ethylene carbonate (EC) have been examined. Our calculations indicate that the high reduction potential and low barrier for the ring opening of EC is the main cause for the continuous growth of SEI observed in SIBs. The impact of two well-known electrolyte additives, vinyl carbonate (VC) and fluoroethylene carbonate (FEC), on SEI composition was evaluated by studying decomposition pathways of (1) VC and FEC molecules in the bulk EC solvent and (2) an EC molecule in a supermolecular cluster comprising an EC and the additive molecule. The additive molecules have significantly low barriers for decomposition and therefore decompose first. Additionally, the presence of an additive molecule was also shown to increase the barrier for decomposition of EC. Another observation suggests that the preferred reduction state of an EC molecule changes when it forms a dimer with additive molecules, and these reduction states have different decomposition pathways which leads to formation of different SEI compounds. On the basis of these observations, we predict that not only do the additive molecules protect solvent molecules from reductive decomposition but also they can promote alternate pathways for the decomposition, leading to qualitatively different and potentially stable SEI products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助hao采纳,获得10
1秒前
2秒前
小兮完成签到,获得积分10
2秒前
心想事成组完成签到,获得积分10
3秒前
4秒前
娜乌西卡完成签到,获得积分10
5秒前
陌上花开完成签到,获得积分0
6秒前
卡卡完成签到,获得积分10
6秒前
赘婿应助Denmark采纳,获得10
8秒前
李渤海发布了新的文献求助10
8秒前
无聊的月饼完成签到 ,获得积分10
9秒前
温暖小松鼠完成签到 ,获得积分10
10秒前
11秒前
12秒前
13秒前
Eri_SCI完成签到 ,获得积分10
13秒前
忐忑的书桃完成签到 ,获得积分10
15秒前
巴达天使发布了新的文献求助10
18秒前
19秒前
MShou发布了新的文献求助10
20秒前
完美世界应助yyh12138采纳,获得10
21秒前
清爽胡萝卜完成签到,获得积分20
25秒前
26秒前
巴达天使完成签到,获得积分10
26秒前
苗惜霜发布了新的文献求助10
26秒前
28秒前
28秒前
小飞飞应助李渤海采纳,获得20
28秒前
29秒前
高大凌寒应助小卷粉采纳,获得200
29秒前
Xumm发布了新的文献求助10
31秒前
31秒前
33秒前
苗惜霜完成签到,获得积分10
33秒前
快快乐乐巴完成签到,获得积分10
34秒前
小次之山完成签到,获得积分10
34秒前
ZYH完成签到 ,获得积分10
35秒前
Zzz_Carlos完成签到 ,获得积分10
35秒前
yyh12138发布了新的文献求助10
36秒前
gjh发布了新的文献求助10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783020
求助须知:如何正确求助?哪些是违规求助? 3328384
关于积分的说明 10236158
捐赠科研通 3043496
什么是DOI,文献DOI怎么找? 1670517
邀请新用户注册赠送积分活动 799751
科研通“疑难数据库(出版商)”最低求助积分说明 759119