Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches

火车 准时 数学优化 调度(生产过程) 时间范围 计算机科学 整数规划 能源消耗 运筹学 动态规划 工程类 运输工程 数学 地图学 电气工程 地理
作者
Jiateng Yin,Lixing Yang,Tao Tang,Ziyou Gao,Bin Ran
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:97: 182-213 被引量:307
标识
DOI:10.1016/j.trb.2017.01.001
摘要

Abstract In the daily operation of metro systems, the train scheduling problem aims to find a set of space-time paths for multiple trains that determine their departure and arrival times at metro stations, while train operations are in charge of selecting the best operational speed to satisfy the punctuality and operation costs. Different from the most existing researches that treat these two problems separately, this paper proposes an integrated approach for the train scheduling problem on a bi-direction urban metro line in order to minimize the operational costs (i.e., energy consumption) and passenger waiting time. More specifically, we simultaneously consider (1) the train operational velocity choices that correspond to the energy consumption of trains on each travelling arc, and (2) the dynamic passenger demands at each station for the calculation of total passenger waiting time in the planning horizon. By employing a space-time network representation in the formulations, this complex train scheduling and control problem with dynamic passenger demands is rigorously formulated into two optimization models with linear forms. The first model is an integer programming model that jointly minimizes train traction energy consumption and passenger waiting time. The second model, which is formulated as a mixed-integer programming model, further considers the utilization of regenerative braking energy on the basis of the first model. Due to the computational complexity of these two models, especially for large-scale real-world instances, we develop a Lagrangian relaxation (LR)-based heuristic algorithm that decomposes the primal problem into two sets of subproblems and thus enables to find a good solution in short computational time. Finally, two sets of numerical experiments, involving a relatively small-scale case and a real-world instance based on the operation data of Beijing metro are implemented to verify the effectiveness of the proposed approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Michael_li完成签到,获得积分10
刚刚
肉片牛帅帅完成签到,获得积分10
1秒前
Nolan完成签到,获得积分10
1秒前
高大的友梅完成签到 ,获得积分10
2秒前
杨lan完成签到 ,获得积分10
3秒前
uone完成签到,获得积分10
3秒前
realtimes完成签到,获得积分10
3秒前
柠檬普洱茶完成签到,获得积分10
4秒前
称心人达完成签到,获得积分10
6秒前
一水独流完成签到,获得积分10
7秒前
昔昔完成签到 ,获得积分10
9秒前
King完成签到 ,获得积分10
9秒前
科研通AI5应助俭朴涫采纳,获得10
10秒前
Scss完成签到,获得积分10
10秒前
旱田蜗牛完成签到,获得积分10
10秒前
贰叁伍完成签到,获得积分10
11秒前
12秒前
赵怼怼完成签到,获得积分10
13秒前
梦在远方完成签到 ,获得积分10
13秒前
Mr.Ren完成签到,获得积分10
14秒前
嗯呢完成签到 ,获得积分10
17秒前
Xu完成签到,获得积分10
17秒前
xz发布了新的文献求助10
18秒前
ahh完成签到 ,获得积分10
18秒前
小熊完成签到,获得积分20
18秒前
甄遥完成签到,获得积分10
19秒前
王十二完成签到 ,获得积分10
19秒前
爱笑半雪完成签到,获得积分10
19秒前
蝈蝈完成签到,获得积分10
19秒前
20秒前
Tinweng完成签到 ,获得积分10
20秒前
MRJJJJ完成签到,获得积分10
22秒前
tigger完成签到,获得积分10
24秒前
冷艳铁身完成签到 ,获得积分10
24秒前
01259完成签到 ,获得积分10
24秒前
健壮洋葱完成签到 ,获得积分10
24秒前
阿南完成签到 ,获得积分10
25秒前
25秒前
大观天下发布了新的文献求助10
26秒前
研友_Z60ObL完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188343
求助须知:如何正确求助?哪些是违规求助? 4372620
关于积分的说明 13613734
捐赠科研通 4225939
什么是DOI,文献DOI怎么找? 2318042
邀请新用户注册赠送积分活动 1316607
关于科研通互助平台的介绍 1266283