同态加密
方案(数学)
构造(python库)
秘密分享
同态秘密共享
计算机科学
多项式的
支化(高分子化学)
班级(哲学)
离散数学
数学
功能(生物学)
理论计算机科学
算法
组合数学
密码学
计算机安全
程序设计语言
人工智能
生物
进化生物学
数学分析
加密
复合材料
材料科学
作者
Elette Boyle,Geoffroy Couteau,Niv Gilboa,Yuval Ishai,Michele Orrù
标识
DOI:10.1145/3133956.3134107
摘要
We continue the study of Homomorphic Secret Sharing (HSS), recently introduced by Boyle et al. (Crypto 2016, Eurocrypt 2017). A (2-party) HSS scheme splits an input x into shares (x0,x1) such that (1) each share computationally hides x, and (2) there exists an efficient homomorphic evaluation algorithm $\Eval$ such that for any function (or "program") from a given class it holds that Eval(x0,P)+Eval(x1,P)=P(x). Boyle et al. show how to construct an HSS scheme for branching programs, with an inverse polynomial error, using discrete-log type assumptions such as DDH.
科研通智能强力驱动
Strongly Powered by AbleSci AI