已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Peptide Supramolecular Self-Assembly:Structural Precise Regulation and Functionalization

化学 表面改性 超分子化学 自组装 翻译后修饰 纳米技术 组合化学 生物化学 结晶学 有机化学 晶体结构 材料科学 物理化学
作者
Juan Wang,Qianli Zou,Xuehai Yan
出处
期刊:Acta Chimica Sinica [Shaghai Institute of Organic Chemistry]
卷期号:75 (10): 933-933 被引量:14
标识
DOI:10.6023/a17060272
摘要

Biomolecular self-assembly plays a significant role for physiological function. Inspired by this, the construction of functional structures and architectures by biomolecular self-assembly has attracted tremendous attentions. Peptides can be assembled into diverse nanostructures, exhibiting important potential for biomedical and green-life technology applications. How to achieve the structural precise regulation of various nanostructures and functionalization by precise control of structures is the two key challenges in the field of peptide self-assembly. As the assembly process is a spontaneous thermodynamic and kinetic driven process, and is determined by the cooperation of various intermolecular non-covalent interactions, including hydrogen-bonding, electrostatic, p-p stacking, hydrophobic, and van der Waals interactions, the reasonable regulation of these non-covalent interactions is a critical pathway to achieve the two goals. To modulate these non-covalent interactions, one of the common used methods is to change the kinetic factors/external environment, including pH, ionic strength, and temperature, etc. These kinetic factors can effectively influence the interactions between peptides and solvents, resulting in dynamic and responsive variations in structures through multiple length scales and ultimate morphologies. However, the fatal disadvantage is the lacking of the precise regulation of assembled structures in the molecular level with consideration of both thermodynamics and kinetics. Compared with changing the external environment, the specific and precise molecular design is more favorable to achieve the structural precise regulation. The molecular structures and the component of building blocks can be rationally designed. For example, one can modulate the interactions between two or more than two building blocks by changing the physicochemical properties of each building block, enabling self-assembly and structural diversity of the final nanostructures. Furthermore, by combining peptides and other functional biomolecules (such as porphyrins), the functionalization of assembled nanostructures and architectures can be achieved more easily and flexibly. In this review, we will focus on the structural precise regulation and the functionalization of assembled peptide nanostructures. It is believed that the precise regulation of nanostructures is promising to promote the development of peptide-based materials towards green-life technology applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
6秒前
678完成签到 ,获得积分10
7秒前
顺心冰巧发布了新的文献求助20
7秒前
8秒前
9秒前
mncvjs发布了新的文献求助10
10秒前
10秒前
科研发布了新的文献求助10
11秒前
15秒前
完美世界应助BA1采纳,获得10
15秒前
体贴的凝芙完成签到,获得积分10
16秒前
20秒前
21秒前
Hello应助小叶不吃香菜采纳,获得10
21秒前
鲜艳的含玉关注了科研通微信公众号
22秒前
如意鱼完成签到,获得积分10
22秒前
25秒前
舒服的灰狼完成签到 ,获得积分10
29秒前
桐桐应助如意鱼采纳,获得10
29秒前
FashionBoy应助科研通管家采纳,获得30
33秒前
Singularity应助科研通管家采纳,获得10
33秒前
大模型应助科研通管家采纳,获得10
33秒前
爆米花应助科研通管家采纳,获得10
33秒前
Owen应助科研通管家采纳,获得10
33秒前
Akim应助科研通管家采纳,获得10
33秒前
lyric应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得30
33秒前
NexusExplorer应助科研通管家采纳,获得30
33秒前
34秒前
35秒前
Orange应助三叔采纳,获得10
36秒前
科研通AI2S应助无辜素采纳,获得10
38秒前
38秒前
耶瑟儿发布了新的文献求助10
39秒前
小蘑菇应助合适一寡采纳,获得10
39秒前
yyyr发布了新的文献求助30
40秒前
song发布了新的文献求助10
41秒前
高分求助中
Handbook of Fuel Cells, 6 Volume Set 1666
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Tracking and Data Fusion: A Handbook of Algorithms 1000
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 800
消化器内視鏡関連の偶発症に関する第7回全国調査報告2019〜2021年までの3年間 500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 冶金 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2864021
求助须知:如何正确求助?哪些是违规求助? 2469983
关于积分的说明 6698461
捐赠科研通 2160328
什么是DOI,文献DOI怎么找? 1147599
版权声明 585294
科研通“疑难数据库(出版商)”最低求助积分说明 563763