清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Synthetic Xylosides: Probing the Glycosaminoglycan Biosynthetic Machinery for Biomedical Applications

糖胺聚糖 化学 计算机科学 纳米技术 生物化学 材料科学
作者
Jie Shi Chua,Balagurunathan Kuberan
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (11): 2693-2705 被引量:30
标识
DOI:10.1021/acs.accounts.7b00289
摘要

ConspectusGlycosaminoglycans (GAGs) are polysaccharides ubiquitously found on cell surfaces and in the extracellular matrix (ECM). They regulate numerous cellular signaling events involved in many developmental and pathophysiological processes. GAGs are composed of complex sequences of repeating disaccharide units, each of which can carry many different modifications. The tremendous structural variations account for their ability to bind many proteins and thus, for their numerous functions. Although the sequence of GAG biosynthetic events and the enzymes involved mostly were deduced a decade ago, the emergence of tissue or cell specific GAGs from a nontemplate driven process remains an enigma. Current knowledge favors the hypothesis that macromolecular assemblies of GAG biosynthetic enzymes termed "GAGOSOMEs" coordinate polymerization and fine structural modifications in the Golgi apparatus. Distinct GAG structures arise from the differential channeling of substrates through the Golgi apparatus to various GAGOSOMEs. As GAGs perform multiple regulatory roles, it is of great interest to develop molecular strategies to selectively interfere with GAG biosynthesis for therapeutic applications. In this Account, we assess our present knowledge on GAG biosynthesis, the manipulation of GAG biosynthesis using synthetic xylosides, and the unrealized potential of these xylosides in various biomedical applications.Synthetic xylosides are small molecules consisting of a xylose attached to an aglycone group, and they compete with endogenous proteins for precursors and biosynthetic enzymes to assemble GAGs. This competition reduces endogenous proteoglycan-bound GAGs while increasing xyloside-bound free GAGs, mostly chondroitin sulfate (CS) and less heparan sulfate (HS), resulting in a variety of biological consequences. To date, hundreds of xylosides have been published and the importance of the aglycone group in determining the structure of the primed GAG chains is well established. However, the structure–activity relationship has long been cryptic. Nonetheless, xylosides have been designed to increase HS priming, modified to inhibit endogenous GAG production without priming, and engineered to be more biologically relevant.Synthetic xylosides hold great promise in many biomedical applications and as therapeutics. They are small, orally bioavailable, easily excreted, and utilize the host cell biosynthetic machinery to assemble GAGs that are likely nonimmunogenic. Various xylosides have been shown, in different biological systems, to have anticoagulant effects, selectively kill tumor cells, abrogate angiogenic and metastatic pathways, promote angiogenesis and neuronal growth, and affect embryonic development. However, most of these studies utilized the commercially available one or two β-D-xylosides and focused on the impact of endogenous proteoglycan-bound GAG inhibition on biological activity. Nevertheless, the manipulation of cell behavior as a result of stabilizing growth factor signaling with xyloside-primed GAGs is also reckonable but underexplored. Recent advances in the use of molecular modeling and docking simulations to understand the structure–activity relationships of xylosides have opened up the possibility of a more rational aglycone design to achieve a desirable biological outcome through selective priming and inhibitory activities. We envision these advances will encourage more researchers to explore these fascinating xylosides, harness the GAG biosynthetic machinery for a wider range of biomedical applications, and accelerate the successful transition of xyloside-based therapeutics from bench to bedside.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助hh0采纳,获得10
3秒前
房天川完成签到 ,获得积分10
15秒前
ee_Liu完成签到,获得积分10
18秒前
科研通AI2S应助hh0采纳,获得10
19秒前
renpp822发布了新的文献求助10
30秒前
doreen完成签到 ,获得积分10
43秒前
vsvsgo完成签到,获得积分10
44秒前
烟消云散完成签到,获得积分10
45秒前
pluto应助hh0采纳,获得10
47秒前
zmuzhang2019完成签到,获得积分10
56秒前
pluto应助hh0采纳,获得10
1分钟前
科研通AI2S应助hh0采纳,获得10
2分钟前
Richard完成签到 ,获得积分10
2分钟前
guoguo1119完成签到 ,获得积分10
2分钟前
小小aa16完成签到,获得积分10
3分钟前
章鱼完成签到,获得积分10
3分钟前
4分钟前
隐形问萍发布了新的文献求助30
4分钟前
隐形问萍发布了新的文献求助10
5分钟前
oaoalaa完成签到 ,获得积分10
5分钟前
南城完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
可夫司机完成签到 ,获得积分10
5分钟前
Hyacinth完成签到 ,获得积分10
6分钟前
拓跋雨梅完成签到 ,获得积分0
6分钟前
饱满的棒棒糖完成签到 ,获得积分10
6分钟前
智勇双全完成签到,获得积分10
7分钟前
lovexa完成签到,获得积分10
7分钟前
dreamwalk完成签到 ,获得积分10
7分钟前
iberis完成签到 ,获得积分10
7分钟前
kittency完成签到 ,获得积分10
7分钟前
含糊的茹妖完成签到 ,获得积分10
8分钟前
theo完成签到 ,获得积分10
8分钟前
8分钟前
tannie完成签到 ,获得积分10
8分钟前
renpp822发布了新的文献求助10
8分钟前
wwe完成签到,获得积分10
9分钟前
creep2020完成签到,获得积分10
9分钟前
gyx完成签到 ,获得积分10
9分钟前
zhangguo完成签到 ,获得积分10
11分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239003
求助须知:如何正确求助?哪些是违规求助? 2884295
关于积分的说明 8232922
捐赠科研通 2552338
什么是DOI,文献DOI怎么找? 1380690
科研通“疑难数据库(出版商)”最低求助积分说明 649071
邀请新用户注册赠送积分活动 624769