亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method

卷积神经网络 计算机科学 特征提取 深度学习 断层(地质) 人工神经网络 人工智能 模式识别(心理学) 过程(计算) 滤波器(信号处理) 支持向量机 数据挖掘 机器学习 计算机视觉 地质学 操作系统 地震学
作者
Long Wen,Xinyu Li,Liang Gao,Yuyan Zhang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:65 (7): 5990-5998 被引量:1771
标识
DOI:10.1109/tie.2017.2774777
摘要

Fault diagnosis is vital in manufacturing system, since early detections on the emerging problem can save invaluable time and cost. With the development of smart manufacturing, the data-driven fault diagnosis becomes a hot topic. However, the traditional data-driven fault diagnosis methods rely on the features extracted by experts. The feature extraction process is an exhausted work and greatly impacts the final result. Deep learning (DL) provides an effective way to extract the features of raw data automatically. Convolutional neural network (CNN) is an effective DL method. In this study, a new CNN based on LeNet-5 is proposed for fault diagnosis. Through a conversion method converting signals into two-dimensional (2-D) images, the proposed method can extract the features of the converted 2-D images and eliminate the effect of handcrafted features. The proposed method which is tested on three famous datasets, including motor bearing dataset, self-priming centrifugal pump dataset, and axial piston hydraulic pump dataset, has achieved prediction accuracy of 99.79%, 99.481%, and 100%, respectively. The results have been compared with other DL and traditional methods, including adaptive deep CNN, sparse filter, deep belief network, and support vector machine. The comparisons show that the proposed CNN-based data-driven fault diagnosis method has achieved significant improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
念0完成签到 ,获得积分10
18秒前
18秒前
20秒前
TT发布了新的文献求助10
20秒前
22秒前
25秒前
26秒前
zjc发布了新的文献求助10
30秒前
sqb发布了新的文献求助10
31秒前
ding应助高贵小兔子采纳,获得30
36秒前
45秒前
48秒前
沉默的虔完成签到,获得积分10
48秒前
53秒前
第五点完成签到 ,获得积分10
55秒前
葛力完成签到,获得积分10
1分钟前
激动的晓筠完成签到 ,获得积分10
1分钟前
梦回与她完成签到,获得积分10
1分钟前
文艺的枫叶完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
万能图书馆应助YZF采纳,获得10
1分钟前
田様应助震动的嘉懿采纳,获得10
1分钟前
今后应助xx采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
Rondab应助科研通管家采纳,获得10
1分钟前
1分钟前
彳亍完成签到,获得积分10
1分钟前
开霁完成签到 ,获得积分10
1分钟前
1分钟前
脑洞疼应助zjc采纳,获得10
1分钟前
zjc完成签到,获得积分20
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960030
求助须知:如何正确求助?哪些是违规求助? 3506241
关于积分的说明 11128455
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789595
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056