A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method

卷积神经网络 计算机科学 特征提取 深度学习 断层(地质) 人工神经网络 人工智能 模式识别(心理学) 过程(计算) 滤波器(信号处理) 支持向量机 数据挖掘 机器学习 计算机视觉 地质学 操作系统 地震学
作者
Long Wen,Xinyu Li,Liang Gao,Yuyan Zhang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:65 (7): 5990-5998 被引量:1658
标识
DOI:10.1109/tie.2017.2774777
摘要

Fault diagnosis is vital in manufacturing system, since early detections on the emerging problem can save invaluable time and cost. With the development of smart manufacturing, the data-driven fault diagnosis becomes a hot topic. However, the traditional data-driven fault diagnosis methods rely on the features extracted by experts. The feature extraction process is an exhausted work and greatly impacts the final result. Deep learning (DL) provides an effective way to extract the features of raw data automatically. Convolutional neural network (CNN) is an effective DL method. In this study, a new CNN based on LeNet-5 is proposed for fault diagnosis. Through a conversion method converting signals into two-dimensional (2-D) images, the proposed method can extract the features of the converted 2-D images and eliminate the effect of handcrafted features. The proposed method which is tested on three famous datasets, including motor bearing dataset, self-priming centrifugal pump dataset, and axial piston hydraulic pump dataset, has achieved prediction accuracy of 99.79%, 99.481%, and 100%, respectively. The results have been compared with other DL and traditional methods, including adaptive deep CNN, sparse filter, deep belief network, and support vector machine. The comparisons show that the proposed CNN-based data-driven fault diagnosis method has achieved significant improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gauss应助张小汉采纳,获得30
1秒前
嘻嘻发布了新的文献求助10
1秒前
杰哥完成签到 ,获得积分10
2秒前
Ava应助赵小可可可可采纳,获得10
2秒前
科研通AI5应助kento采纳,获得30
3秒前
nkmenghan发布了新的文献求助10
4秒前
7秒前
redondo10完成签到,获得积分0
8秒前
9秒前
乔qiao发布了新的文献求助30
12秒前
WZ0904发布了新的文献求助10
13秒前
poegtam完成签到,获得积分10
14秒前
大胆盼兰发布了新的文献求助10
15秒前
wuyan204完成签到 ,获得积分10
16秒前
windcreator完成签到,获得积分10
16秒前
redondo5完成签到,获得积分0
16秒前
wangrswjx完成签到 ,获得积分10
16秒前
科研通AI5应助su采纳,获得10
16秒前
19秒前
21秒前
小二郎应助嘻嘻采纳,获得10
21秒前
yun完成签到 ,获得积分10
22秒前
22秒前
24秒前
健忘曼冬发布了新的文献求助10
24秒前
redondo完成签到,获得积分10
24秒前
momo完成签到,获得积分10
25秒前
希望天下0贩的0应助meng采纳,获得10
26秒前
龙歪歪发布了新的文献求助10
27秒前
27秒前
暮城完成签到,获得积分10
27秒前
28秒前
云墨完成签到 ,获得积分10
28秒前
30秒前
31秒前
Akim应助caoyy采纳,获得10
31秒前
32秒前
科研通AI2S应助DreamMaker采纳,获得10
32秒前
35秒前
zho发布了新的文献求助30
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849