A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method

卷积神经网络 计算机科学 特征提取 深度学习 断层(地质) 人工神经网络 人工智能 模式识别(心理学) 过程(计算) 滤波器(信号处理) 支持向量机 数据挖掘 机器学习 计算机视觉 地质学 操作系统 地震学
作者
Long Wen,Xinyu Li,Liang Gao,Yuyan Zhang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:65 (7): 5990-5998 被引量:1658
标识
DOI:10.1109/tie.2017.2774777
摘要

Fault diagnosis is vital in manufacturing system, since early detections on the emerging problem can save invaluable time and cost. With the development of smart manufacturing, the data-driven fault diagnosis becomes a hot topic. However, the traditional data-driven fault diagnosis methods rely on the features extracted by experts. The feature extraction process is an exhausted work and greatly impacts the final result. Deep learning (DL) provides an effective way to extract the features of raw data automatically. Convolutional neural network (CNN) is an effective DL method. In this study, a new CNN based on LeNet-5 is proposed for fault diagnosis. Through a conversion method converting signals into two-dimensional (2-D) images, the proposed method can extract the features of the converted 2-D images and eliminate the effect of handcrafted features. The proposed method which is tested on three famous datasets, including motor bearing dataset, self-priming centrifugal pump dataset, and axial piston hydraulic pump dataset, has achieved prediction accuracy of 99.79%, 99.481%, and 100%, respectively. The results have been compared with other DL and traditional methods, including adaptive deep CNN, sparse filter, deep belief network, and support vector machine. The comparisons show that the proposed CNN-based data-driven fault diagnosis method has achieved significant improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助高丽娜采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
不配.应助科研通管家采纳,获得10
1秒前
浅尝离白应助科研通管家采纳,获得30
1秒前
所所应助科研通管家采纳,获得10
1秒前
Henry应助科研通管家采纳,获得30
1秒前
浅尝离白应助科研通管家采纳,获得30
2秒前
Akim应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
经竺应助whutzxy采纳,获得10
4秒前
烟花应助Aliks采纳,获得10
5秒前
小瓶子完成签到 ,获得积分10
5秒前
7秒前
情怀应助ZcLee采纳,获得10
7秒前
CSUST科研一哥应助JIANG采纳,获得30
7秒前
7秒前
情怀应助毕葛采纳,获得10
8秒前
清脆安南完成签到 ,获得积分10
8秒前
10秒前
善学以致用应助Dee采纳,获得10
11秒前
CKK发布了新的文献求助30
13秒前
兴奋乌龟发布了新的文献求助10
13秒前
xiaoyi发布了新的文献求助10
13秒前
孟伽娜发布了新的文献求助10
16秒前
Jodie完成签到,获得积分10
16秒前
18秒前
19秒前
21秒前
开拖拉机的芍药完成签到 ,获得积分10
22秒前
宋文娟发布了新的文献求助10
25秒前
小蘑菇应助mendicant采纳,获得10
25秒前
26秒前
汉堡包应助yy超爱看文献采纳,获得10
28秒前
李爱国应助风中的天菱采纳,获得10
28秒前
充电宝应助Anonymous采纳,获得10
30秒前
tang完成签到,获得积分10
30秒前
ardejiang发布了新的文献求助10
31秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234215
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216267
捐赠科研通 2548212
什么是DOI,文献DOI怎么找? 1377613
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302