Beating Bias in the Directed Evolution of Proteins: Combining High‐Fidelity on‐Chip Solid‐Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction

组合化学 合成生物学 定向进化 基因 化学 假基因 计算生物学 突变体 生物 基因组 生物化学
作者
Aitao Li,Carlos G. Acevedo‐Rocha,Zhoutong Sun,Tony Cox,Jia Lucy Xu,Manfred T. Reetz
出处
期刊:ChemBioChem [Wiley]
卷期号:19 (3): 221-228 被引量:43
标识
DOI:10.1002/cbic.201700540
摘要

Abstract Saturation mutagenesis (SM) constitutes a widely used technique in the directed evolution of selective enzymes as catalysts in organic chemistry and in the manipulation of metabolic paths and genomes, but the quality of the libraries is far from optimal due to the inherent amino acid bias. Herein, it is shown how this fundamental problem can be solved by applying high‐fidelity solid‐phase chemical gene synthesis on silicon chips followed by efficient gene assembly. Limonene epoxide hydrolase was chosen as the catalyst in the model desymmetrization of cyclohexene oxide with the stereoselective formation of ( R , R )‐ and ( S , S )‐cyclohexane‐1,2‐diol. A traditional combinatorial PCR‐based SM library, produced by simultaneous randomization at several residues by using a reduced amino acid alphabet, and the respective synthetic library were constructed and compared. Statistical analysis at the DNA level with massive sequencing demonstrates that, in the synthetic approach, 97 % of the theoretically possible DNA mutants are formed, whereas the traditional SM library contained only about 50 %. Screening at the protein level also showed the superiority of the synthetic library; many highly ( R , R )‐ and ( S , S )‐selective variants being discovered are not found in the traditional SM library. With the prices of synthetic genes decreasing, this approach may point the way to future directed evolution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JPH1990完成签到,获得积分10
刚刚
踏雾发布了新的文献求助10
刚刚
怡然的怜烟应助向雫采纳,获得20
1秒前
xiaohe完成签到,获得积分10
1秒前
大模型应助火星上安萱采纳,获得10
1秒前
不乖完成签到,获得积分10
1秒前
renyi97完成签到,获得积分20
1秒前
SJJ应助sdss采纳,获得10
1秒前
甜甜亦丝发布了新的文献求助10
2秒前
2秒前
AhhHuang应助sunyanghu369采纳,获得10
2秒前
3秒前
Ava应助老实的灯泡采纳,获得10
3秒前
3秒前
xiao xu发布了新的文献求助10
4秒前
4秒前
哒哒完成签到,获得积分20
4秒前
slayersqin发布了新的文献求助10
4秒前
5秒前
5秒前
小小的世界完成签到,获得积分10
5秒前
5秒前
一口蛋黄苏完成签到,获得积分10
5秒前
星辰大海应助king采纳,获得10
5秒前
在一发布了新的文献求助10
6秒前
斯文败类应助You采纳,获得10
6秒前
6秒前
6秒前
隐形曼青应助charcw采纳,获得10
7秒前
香蕉菠娜娜完成签到,获得积分10
7秒前
gy关闭了gy文献求助
7秒前
纪汶欣发布了新的文献求助20
7秒前
慕青应助11采纳,获得10
8秒前
不打瞌睡发布了新的文献求助20
8秒前
领导范儿应助火星上安萱采纳,获得10
9秒前
Ava应助Huang采纳,获得10
9秒前
布丁发布了新的文献求助20
10秒前
安和2396完成签到 ,获得积分10
10秒前
研友_nVNBVn发布了新的文献求助50
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041