MIMIX: A Bayesian Mixed-Effects Model for Microbiome Data From Designed Experiments

微生物群 复制 人类微生物组计划 范畴变量 贝叶斯概率 鉴定(生物学) 推论 计算机科学 生物 生态学 机器学习 人工智能 人体微生物群 统计 生物信息学 数学
作者
Neal S. Grantham,Yawen Guan,Brian J. Reich,Elizabeth T. Borer,Kevin Gross
出处
期刊:Journal of the American Statistical Association [Taylor & Francis]
卷期号:115 (530): 599-609 被引量:19
标识
DOI:10.1080/01621459.2019.1626242
摘要

Recent advances in bioinformatics have made high-throughput microbiome data widely available, and new statistical tools are required to maximize the information gained from these data. For example, analysis of high-dimensional microbiome data from designed experiments remains an open area in microbiome research. Contemporary analyses work on metrics that summarize collective properties of the microbiome, but such reductions preclude inference on the fine-scale effects of environmental stimuli on individual microbial taxa. Other approaches model the proportions or counts of individual taxa as response variables in mixed models, but these methods fail to account for complex correlation patterns among microbial communities. In this article, we propose a novel Bayesian mixed-effects model that exploits cross-taxa correlations within the microbiome, a model we call microbiome mixed model (MIMIX). MIMIX offers global tests for treatment effects, local tests and estimation of treatment effects on individual taxa, quantification of the relative contribution from heterogeneous sources to microbiome variability, and identification of latent ecological subcommunities in the microbiome. MIMIX is tailored to large microbiome experiments using a combination of Bayesian factor analysis to efficiently represent dependence between taxa and Bayesian variable selection methods to achieve sparsity. We demonstrate the model using a simulation experiment and on a 2 × 2 factorial experiment of the effects of nutrient supplement and herbivore exclusion on the foliar fungal microbiome of Andropogon gerardii, a perennial bunchgrass, as part of the global Nutrient Network research initiative. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助150
刚刚
暴躁章鱼发布了新的文献求助30
刚刚
科研通AI5应助无误采纳,获得10
刚刚
Derek完成签到 ,获得积分10
刚刚
tan90完成签到,获得积分10
刚刚
花花花花完成签到 ,获得积分10
1秒前
yangbing123完成签到,获得积分10
1秒前
孤独雨梅完成签到,获得积分10
1秒前
茅十八完成签到,获得积分10
1秒前
2秒前
2秒前
orixero应助fang采纳,获得10
3秒前
LiDaYang完成签到,获得积分10
3秒前
lzx完成签到,获得积分10
3秒前
3秒前
111222发布了新的文献求助10
3秒前
遗yi完成签到,获得积分10
4秒前
5秒前
天天快乐应助DOUBLE采纳,获得10
5秒前
5秒前
易安完成签到,获得积分10
5秒前
充电宝应助科研饼采纳,获得10
5秒前
6秒前
科研通AI2S应助shuzi采纳,获得10
6秒前
77wlr完成签到,获得积分10
7秒前
清脆惜寒发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
大模型应助五个小白采纳,获得10
7秒前
8秒前
酷酷妙梦完成签到,获得积分10
9秒前
9秒前
善学以致用应助Adrian采纳,获得10
9秒前
李爱国应助88采纳,获得10
10秒前
外向的芒果完成签到,获得积分20
10秒前
斯文墨镜完成签到,获得积分10
10秒前
10秒前
是莉莉娅发布了新的文献求助30
10秒前
10秒前
德鲁大叔发布了新的文献求助20
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599035
求助须知:如何正确求助?哪些是违规求助? 4009790
关于积分的说明 12413421
捐赠科研通 3689444
什么是DOI,文献DOI怎么找? 2033850
邀请新用户注册赠送积分活动 1066993
科研通“疑难数据库(出版商)”最低求助积分说明 952128