MIMIX: A Bayesian Mixed-Effects Model for Microbiome Data From Designed Experiments

微生物群 复制 人类微生物组计划 范畴变量 贝叶斯概率 鉴定(生物学) 推论 计算机科学 生物 生态学 机器学习 人工智能 人体微生物群 统计 生物信息学 数学
作者
Neal S. Grantham,Yawen Guan,Brian J. Reich,Elizabeth T. Borer,Kevin Gross
出处
期刊:Journal of the American Statistical Association [Taylor & Francis]
卷期号:115 (530): 599-609 被引量:19
标识
DOI:10.1080/01621459.2019.1626242
摘要

Recent advances in bioinformatics have made high-throughput microbiome data widely available, and new statistical tools are required to maximize the information gained from these data. For example, analysis of high-dimensional microbiome data from designed experiments remains an open area in microbiome research. Contemporary analyses work on metrics that summarize collective properties of the microbiome, but such reductions preclude inference on the fine-scale effects of environmental stimuli on individual microbial taxa. Other approaches model the proportions or counts of individual taxa as response variables in mixed models, but these methods fail to account for complex correlation patterns among microbial communities. In this article, we propose a novel Bayesian mixed-effects model that exploits cross-taxa correlations within the microbiome, a model we call microbiome mixed model (MIMIX). MIMIX offers global tests for treatment effects, local tests and estimation of treatment effects on individual taxa, quantification of the relative contribution from heterogeneous sources to microbiome variability, and identification of latent ecological subcommunities in the microbiome. MIMIX is tailored to large microbiome experiments using a combination of Bayesian factor analysis to efficiently represent dependence between taxa and Bayesian variable selection methods to achieve sparsity. We demonstrate the model using a simulation experiment and on a 2 × 2 factorial experiment of the effects of nutrient supplement and herbivore exclusion on the foliar fungal microbiome of Andropogon gerardii, a perennial bunchgrass, as part of the global Nutrient Network research initiative. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大轩完成签到 ,获得积分10
1秒前
1秒前
yshj完成签到,获得积分10
1秒前
多情的忆之完成签到,获得积分10
3秒前
无花果应助xiaozhou采纳,获得10
6秒前
CodeCraft应助TanFT采纳,获得10
8秒前
AnnChen完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助洪山老狗采纳,获得10
10秒前
清_完成签到,获得积分10
10秒前
清_发布了新的文献求助10
14秒前
好好好完成签到 ,获得积分10
16秒前
凯凯完成签到,获得积分10
16秒前
16秒前
Ava应助不安的秋白采纳,获得10
17秒前
17秒前
17秒前
sirhai发布了新的文献求助10
21秒前
23秒前
寒冷丹雪完成签到,获得积分10
25秒前
yshj发布了新的文献求助30
26秒前
糖糖糖唐完成签到,获得积分10
26秒前
苏苏苏完成签到,获得积分20
30秒前
没有稗子完成签到 ,获得积分10
31秒前
PHW完成签到,获得积分10
32秒前
35秒前
权寻梅完成签到,获得积分10
37秒前
37秒前
科研通AI2S应助自然背包采纳,获得30
38秒前
Liu应助自然背包采纳,获得10
38秒前
宛海发布了新的文献求助10
39秒前
41秒前
42秒前
ZZZ发布了新的文献求助10
42秒前
义气绿柳发布了新的文献求助10
43秒前
43秒前
43秒前
Boa发布了新的文献求助10
43秒前
斯文败类应助daisy采纳,获得10
43秒前
华仔应助念姬采纳,获得10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511567
关于积分的说明 11158912
捐赠科研通 3246169
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343