Leveraging Contextual Sentence Relations for Extractive Summarization Using a Neural Attention Model

自动汇总 计算机科学 判决 人工智能 自然语言处理 人工神经网络
作者
Pengjie Ren,Zhumin Chen,Zhaochun Ren,Furu Wei,Jun Ma,Maarten de Rijke
标识
DOI:10.1145/3077136.3080792
摘要

As a framework for extractive summarization, sentence regression has achieved state-of-the-art performance in several widely-used practical systems. The most challenging task within the sentence regression framework is to identify discriminative features to encode a sentence into a feature vector. So far, sentence regression approaches have neglected to use features that capture contextual relations among sentences. We propose a neural network model, Contextual Relation-based Summarization (CRSum), to take advantage of contextual relations among sentences so as to improve the performance of sentence regression. Specifically, we first use sentence relations with a word-level attentive pooling convolutional neural network to construct sentence representations. Then, we use contextual relations with a sentence-level attentive pooling recurrent neural network to construct context representations. Finally, CRSum automatically learns useful contextual features by jointly learning representations of sentences and similarity scores between a sentence and sentences in its context. Using a two-level attention mechanism, CRSum is able to pay attention to important content, i.e., words and sentences, in the surrounding context of a given sentence. We carry out extensive experiments on six benchmark datasets. CRSum alone can achieve comparable performance with state-of-the-art approaches; when combined with a few basic surface features, it significantly outperforms the state-of-the-art in terms of multiple ROUGE metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyue发布了新的文献求助10
刚刚
LYY完成签到,获得积分10
刚刚
dpp完成签到,获得积分20
刚刚
1秒前
77发布了新的文献求助10
1秒前
2秒前
3秒前
易子完成签到 ,获得积分10
5秒前
科研通AI2S应助弄香采纳,获得10
6秒前
6秒前
不配.应助goodgoodstudy采纳,获得50
7秒前
故城发布了新的文献求助10
7秒前
肖小光完成签到,获得积分10
8秒前
随机数学完成签到,获得积分10
9秒前
不配.应助沉静智宸采纳,获得10
9秒前
11秒前
肖小光发布了新的文献求助10
13秒前
paul完成签到,获得积分10
13秒前
13秒前
英俊的铭应助lily采纳,获得10
14秒前
我想静静完成签到 ,获得积分10
15秒前
16秒前
所所应助拉卡拉ah采纳,获得10
18秒前
一个橘子完成签到,获得积分10
18秒前
dddddd完成签到,获得积分10
18秒前
wwwwppp完成签到,获得积分10
19秒前
Guanine完成签到,获得积分10
19秒前
DIY101完成签到,获得积分10
20秒前
小布丁发布了新的文献求助10
22秒前
困敦发布了新的文献求助10
23秒前
格子完成签到,获得积分10
24秒前
SC完成签到,获得积分10
25秒前
英俊的铭应助lily采纳,获得10
25秒前
勤恳的不悔完成签到,获得积分10
30秒前
30秒前
zyy6657完成签到,获得积分10
33秒前
舒心的曼青应助zhanghan采纳,获得10
34秒前
小于一发布了新的文献求助10
34秒前
拉卡拉ah完成签到,获得积分10
36秒前
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141210
求助须知:如何正确求助?哪些是违规求助? 2792192
关于积分的说明 7801885
捐赠科研通 2448394
什么是DOI,文献DOI怎么找? 1302521
科研通“疑难数据库(出版商)”最低求助积分说明 626638
版权声明 601237