Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India : Analysis of comparative performances of SVR, ANN and LRM

均方误差 支持向量机 人工神经网络 相关系数 系列(地层学) 代理(统计) 决定系数 数学 线性回归 计算机科学 统计 人工智能 地质学 古生物学
作者
Amritendu Mukherjee,Parthasarathy Ramachandran
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:558: 647-658 被引量:88
标识
DOI:10.1016/j.jhydrol.2018.02.005
摘要

Prediction of Ground Water Level (GWL) is extremely important for sustainable use and management of ground water resource. The motivations for this work is to understand the relationship between Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water change (ΔTWS) data and GWL, so that ΔTWS could be used as a proxy measurement for GWL. In our study, we have selected five observation wells from different geographic regions in India. The datasets are unevenly spaced time series data which restricts us from applying standard time series methodologies and therefore in order to model and predict GWL with the help of ΔTWS, we have built Linear Regression Model (LRM), Support Vector Regression (SVR) and Artificial Neural Network (ANN). Comparative performances of LRM, SVR and ANN have been evaluated with the help of correlation coefficient (ρ) and Root Mean Square Error (RMSE) between the actual and fitted (for training dataset) or predicted (for test dataset) values of GWL. It has been observed in our study that ΔTWS is highly significant variable to model GWL and the amount of total variations in GWL that could be explained with the help of ΔTWS varies from 36.48% to 74.28% (0.3648⩽R2⩽0.7428). We have found that for the model GWL∼ΔTWS, for both training and test dataset, performances of SVR and ANN are better than that of LRM in terms of ρ and RMSE. It also has been found in our study that with the inclusion of meteorological variables along with ΔTWS as input parameters to model GWL, the performance of SVR improves and it performs better than ANN. These results imply that for modelling irregular time series GWL data, ΔTWS could be very useful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Burnell发布了新的文献求助10
刚刚
1秒前
曾经的依风完成签到,获得积分10
2秒前
清秀寻菱完成签到,获得积分10
2秒前
3秒前
科研通AI2S应助8464368采纳,获得10
3秒前
3秒前
3秒前
mm发布了新的文献求助10
3秒前
Owen应助beleve采纳,获得10
4秒前
无限的南霜完成签到,获得积分10
4秒前
传奇3应助慎独而已采纳,获得10
4秒前
王蕊完成签到,获得积分10
4秒前
Dallas完成签到,获得积分10
4秒前
ZKY_ZM发布了新的文献求助10
4秒前
斯文败类应助Burnell采纳,获得10
5秒前
彪壮的小玉完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
郎治宇发布了新的文献求助10
8秒前
迷路芝麻发布了新的文献求助10
8秒前
香辣鸡腿堡完成签到,获得积分10
8秒前
prettyboymzl发布了新的文献求助10
8秒前
烟花应助大咖采纳,获得10
9秒前
9秒前
馒头发布了新的文献求助10
9秒前
527发布了新的文献求助10
9秒前
ding应助mm采纳,获得10
10秒前
moyue完成签到,获得积分10
10秒前
12秒前
NexusExplorer应助灯灯采纳,获得10
13秒前
领导范儿应助枕安采纳,获得10
13秒前
是哆啦K梦呀完成签到 ,获得积分10
13秒前
医生发布了新的文献求助10
13秒前
程雯慧发布了新的文献求助10
13秒前
moyue发布了新的文献求助10
14秒前
爆米花应助初七采纳,获得10
14秒前
明亮的幻竹应助周姐轮采纳,获得10
14秒前
Aries发布了新的文献求助20
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160291
求助须知:如何正确求助?哪些是违规求助? 2811389
关于积分的说明 7892168
捐赠科研通 2470409
什么是DOI,文献DOI怎么找? 1315568
科研通“疑难数据库(出版商)”最低求助积分说明 630869
版权声明 602038