已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India : Analysis of comparative performances of SVR, ANN and LRM

均方误差 支持向量机 人工神经网络 相关系数 系列(地层学) 代理(统计) 决定系数 数学 线性回归 计算机科学 统计 人工智能 地质学 古生物学
作者
Amritendu Mukherjee,Parthasarathy Ramachandran
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:558: 647-658 被引量:88
标识
DOI:10.1016/j.jhydrol.2018.02.005
摘要

Prediction of Ground Water Level (GWL) is extremely important for sustainable use and management of ground water resource. The motivations for this work is to understand the relationship between Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water change (ΔTWS) data and GWL, so that ΔTWS could be used as a proxy measurement for GWL. In our study, we have selected five observation wells from different geographic regions in India. The datasets are unevenly spaced time series data which restricts us from applying standard time series methodologies and therefore in order to model and predict GWL with the help of ΔTWS, we have built Linear Regression Model (LRM), Support Vector Regression (SVR) and Artificial Neural Network (ANN). Comparative performances of LRM, SVR and ANN have been evaluated with the help of correlation coefficient (ρ) and Root Mean Square Error (RMSE) between the actual and fitted (for training dataset) or predicted (for test dataset) values of GWL. It has been observed in our study that ΔTWS is highly significant variable to model GWL and the amount of total variations in GWL that could be explained with the help of ΔTWS varies from 36.48% to 74.28% (0.3648⩽R2⩽0.7428). We have found that for the model GWL∼ΔTWS, for both training and test dataset, performances of SVR and ANN are better than that of LRM in terms of ρ and RMSE. It also has been found in our study that with the inclusion of meteorological variables along with ΔTWS as input parameters to model GWL, the performance of SVR improves and it performs better than ANN. These results imply that for modelling irregular time series GWL data, ΔTWS could be very useful.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助laifeihong采纳,获得10
3秒前
xinbadake完成签到,获得积分10
4秒前
5秒前
5秒前
wdw2501完成签到,获得积分10
5秒前
鳗鱼又槐完成签到,获得积分20
6秒前
left_right发布了新的文献求助10
6秒前
赘婿应助荣一采纳,获得10
7秒前
peashooter发布了新的文献求助10
8秒前
soda完成签到,获得积分10
10秒前
12秒前
left_right完成签到,获得积分10
12秒前
12秒前
RJ完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
荟菁发布了新的文献求助10
16秒前
算命的完成签到,获得积分10
17秒前
牛马学生发布了新的文献求助10
17秒前
望空发布了新的文献求助10
17秒前
yu发布了新的文献求助10
19秒前
丘比特应助Sg采纳,获得10
20秒前
24秒前
Owen应助刻苦迎波采纳,获得10
24秒前
在水一方应助四夕水窖采纳,获得10
24秒前
Fancy完成签到 ,获得积分10
28秒前
29秒前
30秒前
30秒前
缓慢凤凰发布了新的文献求助10
31秒前
春日防卫队Fire完成签到,获得积分10
32秒前
34秒前
虾乐完成签到,获得积分10
34秒前
34秒前
缓慢幻天完成签到,获得积分10
35秒前
浮浮世世应助科研通管家采纳,获得30
36秒前
CipherSage应助科研通管家采纳,获得30
36秒前
共享精神应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得30
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634038
求助须知:如何正确求助?哪些是违规求助? 4730159
关于积分的说明 14987606
捐赠科研通 4791840
什么是DOI,文献DOI怎么找? 2559081
邀请新用户注册赠送积分活动 1519555
关于科研通互助平台的介绍 1479740