Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India : Analysis of comparative performances of SVR, ANN and LRM

均方误差 支持向量机 人工神经网络 相关系数 系列(地层学) 代理(统计) 决定系数 数学 线性回归 计算机科学 统计 人工智能 地质学 古生物学
作者
Amritendu Mukherjee,Parthasarathy Ramachandran
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:558: 647-658 被引量:88
标识
DOI:10.1016/j.jhydrol.2018.02.005
摘要

Prediction of Ground Water Level (GWL) is extremely important for sustainable use and management of ground water resource. The motivations for this work is to understand the relationship between Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water change (ΔTWS) data and GWL, so that ΔTWS could be used as a proxy measurement for GWL. In our study, we have selected five observation wells from different geographic regions in India. The datasets are unevenly spaced time series data which restricts us from applying standard time series methodologies and therefore in order to model and predict GWL with the help of ΔTWS, we have built Linear Regression Model (LRM), Support Vector Regression (SVR) and Artificial Neural Network (ANN). Comparative performances of LRM, SVR and ANN have been evaluated with the help of correlation coefficient (ρ) and Root Mean Square Error (RMSE) between the actual and fitted (for training dataset) or predicted (for test dataset) values of GWL. It has been observed in our study that ΔTWS is highly significant variable to model GWL and the amount of total variations in GWL that could be explained with the help of ΔTWS varies from 36.48% to 74.28% (0.3648⩽R2⩽0.7428). We have found that for the model GWL∼ΔTWS, for both training and test dataset, performances of SVR and ANN are better than that of LRM in terms of ρ and RMSE. It also has been found in our study that with the inclusion of meteorological variables along with ΔTWS as input parameters to model GWL, the performance of SVR improves and it performs better than ANN. These results imply that for modelling irregular time series GWL data, ΔTWS could be very useful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干饭虫应助阿宝采纳,获得10
1秒前
文静青梦发布了新的文献求助10
1秒前
一叶知秋应助SYSUer采纳,获得10
1秒前
文献互助发布了新的文献求助10
2秒前
will发布了新的文献求助10
3秒前
4秒前
xxl完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
江江发布了新的文献求助10
7秒前
小丽完成签到,获得积分10
8秒前
Lucas应助Winter采纳,获得10
8秒前
阿晨发布了新的文献求助10
8秒前
JamesPei应助文静青梦采纳,获得10
9秒前
9秒前
陈业伟发布了新的文献求助10
10秒前
小白白发布了新的文献求助10
10秒前
所所应助嗨波采纳,获得10
11秒前
超级的丹琴完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
浮游应助liuhanchi采纳,获得10
15秒前
我是老大应助liuhanchi采纳,获得10
15秒前
16秒前
传奇3应助小白白采纳,获得10
16秒前
17秒前
科研通AI6应助优雅草莓采纳,获得10
18秒前
琪琪发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941008
求助须知:如何正确求助?哪些是违规求助? 4207071
关于积分的说明 13076503
捐赠科研通 3985864
什么是DOI,文献DOI怎么找? 2182332
邀请新用户注册赠送积分活动 1197889
关于科研通互助平台的介绍 1110237