Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India : Analysis of comparative performances of SVR, ANN and LRM

均方误差 支持向量机 人工神经网络 相关系数 系列(地层学) 代理(统计) 决定系数 数学 线性回归 计算机科学 统计 人工智能 地质学 古生物学
作者
Amritendu Mukherjee,Parthasarathy Ramachandran
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:558: 647-658 被引量:88
标识
DOI:10.1016/j.jhydrol.2018.02.005
摘要

Prediction of Ground Water Level (GWL) is extremely important for sustainable use and management of ground water resource. The motivations for this work is to understand the relationship between Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water change (ΔTWS) data and GWL, so that ΔTWS could be used as a proxy measurement for GWL. In our study, we have selected five observation wells from different geographic regions in India. The datasets are unevenly spaced time series data which restricts us from applying standard time series methodologies and therefore in order to model and predict GWL with the help of ΔTWS, we have built Linear Regression Model (LRM), Support Vector Regression (SVR) and Artificial Neural Network (ANN). Comparative performances of LRM, SVR and ANN have been evaluated with the help of correlation coefficient (ρ) and Root Mean Square Error (RMSE) between the actual and fitted (for training dataset) or predicted (for test dataset) values of GWL. It has been observed in our study that ΔTWS is highly significant variable to model GWL and the amount of total variations in GWL that could be explained with the help of ΔTWS varies from 36.48% to 74.28% (0.3648⩽R2⩽0.7428). We have found that for the model GWL∼ΔTWS, for both training and test dataset, performances of SVR and ANN are better than that of LRM in terms of ρ and RMSE. It also has been found in our study that with the inclusion of meteorological variables along with ΔTWS as input parameters to model GWL, the performance of SVR improves and it performs better than ANN. These results imply that for modelling irregular time series GWL data, ΔTWS could be very useful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chen完成签到 ,获得积分10
1秒前
1秒前
xu发布了新的文献求助10
4秒前
黄油曲奇完成签到,获得积分10
5秒前
糊涂的觅海完成签到 ,获得积分10
5秒前
lzx完成签到,获得积分10
5秒前
5秒前
haishixigua完成签到,获得积分10
5秒前
6秒前
所所应助听不见晚风采纳,获得20
7秒前
玩命的毛衣完成签到 ,获得积分10
7秒前
可爱的函函应助康康采纳,获得10
8秒前
8秒前
9秒前
Liufgui应助cccccl采纳,获得20
9秒前
天真小蚂蚁完成签到,获得积分10
10秒前
zhang完成签到,获得积分10
10秒前
温淼完成签到,获得积分10
11秒前
12秒前
GGBond完成签到,获得积分10
12秒前
13秒前
13秒前
ethanza发布了新的文献求助30
14秒前
扎心发布了新的文献求助10
14秒前
壹君发布了新的文献求助10
15秒前
归尘发布了新的文献求助10
16秒前
xu完成签到,获得积分10
17秒前
黄油曲奇发布了新的文献求助10
17秒前
草莓雪酪发布了新的文献求助20
18秒前
JamesPei应助我是鸡汤采纳,获得10
18秒前
tanrui发布了新的文献求助10
18秒前
yeyuan1017发布了新的文献求助10
19秒前
22秒前
22秒前
充电宝应助vv采纳,获得10
23秒前
无花果应助扎心采纳,获得10
24秒前
25秒前
25秒前
Lucas应助科研通管家采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999444
求助须知:如何正确求助?哪些是违规求助? 3538780
关于积分的说明 11275184
捐赠科研通 3277604
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883977
科研通“疑难数据库(出版商)”最低求助积分说明 810111