Myocardial scar segmentation from magnetic resonance images using convolutional neural network

分割 卷积神经网络 人工智能 磁共振成像 模式识别(心理学) 计算机科学 Sørensen–骰子系数 图像分割 联营 计算机视觉 医学 放射科
作者
Fatemeh Zabihollahy,James A. White,Eranga Ukwatta
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 被引量:12
标识
DOI:10.1117/12.2293518
摘要

Accurate segmentation of the myocardial fibrosis or scar may provide important advancements for the prediction and management of malignant ventricular arrhythmias in patients with cardiovascular disease. In this paper, we propose a semi-automated method for segmentation of myocardial scar from late gadolinium enhancement magnetic resonance image (LGE-MRI) using a convolutional neural network (CNN). In contrast to image intensitybased methods, CNN-based algorithms have the potential to improve the accuracy of scar segmentation through the creation of high-level features from a combination of convolutional, detection and pooling layers. Our developed algorithm was trained using 2,336,703 image patches extracted from 420 slices of five 3D LGE-MR datasets, then validated on 2,204,178 patches from a testing dataset of seven 3D LGE-MR images including 624 slices, all obtained from patients with chronic myocardial infarction. For evaluation of the algorithm, we compared the algorithmgenerated segmentations to manual delineations by experts. Our CNN-based method reported an average Dice similarity coefficient (DSC), precision, and recall of 94.50 ± 3.62%, 96.08 ± 3.10%, and 93.96 ± 3.75% as the accuracy of segmentation, respectively. As compared to several intensity threshold-based methods for scar segmentation, the results of our developed method have a greater agreement with manual expert segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
肾宝完成签到,获得积分10
刚刚
桑叶发布了新的文献求助10
1秒前
Angenstern完成签到 ,获得积分10
2秒前
JamesPei应助澡雪采纳,获得10
2秒前
2秒前
赵志峰完成签到,获得积分20
3秒前
4秒前
5秒前
啊怙纲完成签到 ,获得积分10
5秒前
CipherSage应助jackie采纳,获得10
6秒前
justwander完成签到,获得积分10
8秒前
8秒前
高高代萱完成签到,获得积分20
10秒前
11秒前
11秒前
hh发布了新的文献求助10
12秒前
李繁蕊发布了新的文献求助10
13秒前
打打应助马士全采纳,获得10
13秒前
14秒前
凶狠的秋柳完成签到,获得积分20
14秒前
14秒前
justwander发布了新的文献求助10
15秒前
天行者发布了新的文献求助10
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
21秒前
22秒前
morena发布了新的文献求助30
22秒前
刘玥言发布了新的文献求助10
22秒前
赘婿应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
23秒前
年轻馒头应助科研通管家采纳,获得20
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975871
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201502
捐赠科研通 3256611
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877552
科研通“疑难数据库(出版商)”最低求助积分说明 806430