Myocardial scar segmentation from magnetic resonance images using convolutional neural network

分割 卷积神经网络 人工智能 磁共振成像 模式识别(心理学) 计算机科学 Sørensen–骰子系数 图像分割 联营 计算机视觉 医学 放射科
作者
Fatemeh Zabihollahy,James A. White,Eranga Ukwatta
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 被引量:12
标识
DOI:10.1117/12.2293518
摘要

Accurate segmentation of the myocardial fibrosis or scar may provide important advancements for the prediction and management of malignant ventricular arrhythmias in patients with cardiovascular disease. In this paper, we propose a semi-automated method for segmentation of myocardial scar from late gadolinium enhancement magnetic resonance image (LGE-MRI) using a convolutional neural network (CNN). In contrast to image intensitybased methods, CNN-based algorithms have the potential to improve the accuracy of scar segmentation through the creation of high-level features from a combination of convolutional, detection and pooling layers. Our developed algorithm was trained using 2,336,703 image patches extracted from 420 slices of five 3D LGE-MR datasets, then validated on 2,204,178 patches from a testing dataset of seven 3D LGE-MR images including 624 slices, all obtained from patients with chronic myocardial infarction. For evaluation of the algorithm, we compared the algorithmgenerated segmentations to manual delineations by experts. Our CNN-based method reported an average Dice similarity coefficient (DSC), precision, and recall of 94.50 ± 3.62%, 96.08 ± 3.10%, and 93.96 ± 3.75% as the accuracy of segmentation, respectively. As compared to several intensity threshold-based methods for scar segmentation, the results of our developed method have a greater agreement with manual expert segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
GAOBIN000发布了新的文献求助10
1秒前
可爱的函函应助皮皮怪采纳,获得10
1秒前
Frose发布了新的文献求助10
1秒前
3秒前
3秒前
3秒前
寒生完成签到,获得积分10
3秒前
福团团完成签到,获得积分10
3秒前
3秒前
lllth完成签到,获得积分10
4秒前
xiaoai完成签到 ,获得积分10
4秒前
4秒前
琳琅完成签到,获得积分10
4秒前
方圆几里发布了新的文献求助30
5秒前
wanderer应助大大小采纳,获得10
5秒前
科研通AI5应助失眠的以蓝采纳,获得10
5秒前
等待毛豆完成签到,获得积分10
5秒前
xx完成签到,获得积分10
5秒前
研友_VZG7GZ应助小瑄采纳,获得10
5秒前
6秒前
jzw发布了新的文献求助10
6秒前
奈落完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
韦一手发布了新的文献求助10
7秒前
拼搏向上完成签到,获得积分10
7秒前
Pony完成签到,获得积分10
7秒前
田様应助哈哈采纳,获得10
7秒前
爆米花应助肉脸小鱼采纳,获得10
7秒前
Jasper应助成就的外套采纳,获得10
7秒前
7秒前
glow发布了新的文献求助10
8秒前
烟花应助言之妈妈采纳,获得10
8秒前
8秒前
8秒前
友好笑寒发布了新的文献求助10
8秒前
liuttinn完成签到,获得积分10
9秒前
黄宏旭完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572422
求助须知:如何正确求助?哪些是违规求助? 3993137
关于积分的说明 12361436
捐赠科研通 3666284
什么是DOI,文献DOI怎么找? 2020629
邀请新用户注册赠送积分活动 1054898
科研通“疑难数据库(出版商)”最低求助积分说明 942305