清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Myocardial scar segmentation from magnetic resonance images using convolutional neural network

分割 卷积神经网络 人工智能 磁共振成像 模式识别(心理学) 计算机科学 Sørensen–骰子系数 图像分割 联营 计算机视觉 医学 放射科
作者
Fatemeh Zabihollahy,James A. White,Eranga Ukwatta
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 被引量:12
标识
DOI:10.1117/12.2293518
摘要

Accurate segmentation of the myocardial fibrosis or scar may provide important advancements for the prediction and management of malignant ventricular arrhythmias in patients with cardiovascular disease. In this paper, we propose a semi-automated method for segmentation of myocardial scar from late gadolinium enhancement magnetic resonance image (LGE-MRI) using a convolutional neural network (CNN). In contrast to image intensitybased methods, CNN-based algorithms have the potential to improve the accuracy of scar segmentation through the creation of high-level features from a combination of convolutional, detection and pooling layers. Our developed algorithm was trained using 2,336,703 image patches extracted from 420 slices of five 3D LGE-MR datasets, then validated on 2,204,178 patches from a testing dataset of seven 3D LGE-MR images including 624 slices, all obtained from patients with chronic myocardial infarction. For evaluation of the algorithm, we compared the algorithmgenerated segmentations to manual delineations by experts. Our CNN-based method reported an average Dice similarity coefficient (DSC), precision, and recall of 94.50 ± 3.62%, 96.08 ± 3.10%, and 93.96 ± 3.75% as the accuracy of segmentation, respectively. As compared to several intensity threshold-based methods for scar segmentation, the results of our developed method have a greater agreement with manual expert segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
943034197完成签到,获得积分10
1秒前
yy完成签到 ,获得积分0
2秒前
orixero应助果酱采纳,获得10
3秒前
沉沉完成签到 ,获得积分0
4秒前
一剑白完成签到 ,获得积分10
4秒前
迷路的映安完成签到 ,获得积分10
4秒前
baobeikk完成签到,获得积分10
4秒前
拉长的芷烟完成签到 ,获得积分10
18秒前
wlscj给莎啦啦的求助进行了留言
23秒前
恒牙完成签到 ,获得积分10
25秒前
在水一方完成签到,获得积分0
28秒前
饱满烙完成签到 ,获得积分10
32秒前
liuchang完成签到 ,获得积分10
33秒前
as完成签到 ,获得积分10
34秒前
秋迎夏完成签到,获得积分10
40秒前
CC完成签到 ,获得积分10
42秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
44秒前
一路有你完成签到 ,获得积分10
47秒前
popo6150完成签到 ,获得积分10
48秒前
鲤鱼笑阳完成签到 ,获得积分10
49秒前
火星的雪完成签到 ,获得积分0
50秒前
那时花开应助摆渡人采纳,获得10
51秒前
善善完成签到 ,获得积分10
1分钟前
七里香完成签到 ,获得积分10
1分钟前
1117完成签到 ,获得积分10
1分钟前
wlscj应助科研通管家采纳,获得20
1分钟前
甜乎贝贝完成签到 ,获得积分10
1分钟前
施光玲44931完成签到 ,获得积分10
1分钟前
嘟嘟52edm完成签到 ,获得积分10
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
bellapp完成签到 ,获得积分10
1分钟前
zhangguo完成签到 ,获得积分10
1分钟前
英姑应助着急的书白采纳,获得10
1分钟前
彩色的芷容完成签到 ,获得积分10
1分钟前
无与伦比完成签到 ,获得积分10
1分钟前
跳跃的鹏飞完成签到 ,获得积分10
1分钟前
msd2phd完成签到,获得积分10
2分钟前
宁霸完成签到,获得积分0
2分钟前
学术大佬阿呆完成签到 ,获得积分10
2分钟前
FashionBoy应助月落采纳,获得10
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347381
求助须知:如何正确求助?哪些是违规求助? 4481679
关于积分的说明 13947989
捐赠科研通 4379900
什么是DOI,文献DOI怎么找? 2406682
邀请新用户注册赠送积分活动 1399221
关于科研通互助平台的介绍 1372293