Effects of Phase Aberration and Phase Aberration Correction on the Minimum Variance Beamformer

稳健性(进化) 波束赋形 球差 光学 相(物质) 对比度传递函数 计算机科学 自适应波束形成器 物理 电信 化学 量子力学 基因 镜头(地质) 生物化学
作者
Gustavo Chau,Jeremy J. Dahl,Roberto Lavarello
出处
期刊:Ultrasonic Imaging [SAGE]
卷期号:40 (1): 15-34 被引量:7
标识
DOI:10.1177/0161734617717768
摘要

The minimum variance (MV) beamformer has the potential to enhance the resolution and contrast of ultrasound images but is sensitive to steering vector errors. Robust MV beamformers have been proposed but mainly evaluated in the presence of gross sound speed mismatches, and the impact of phase aberration correction (PAC) methods in mitigating the effects of phase aberration in MV beamformed images has not been explored. In this study, an analysis of the effects of aberration on conventional MV and eigenspace MV (ESMV) beamformers is carried out. In addition, the impact of three PAC algorithms on the performance of MV beamforming is analyzed. The different beamformers were tested on simulated data and on experimental data corrupted with electronic and tissue-based aberration. It is shown that all gains in performance of the MV beamformer with respect to delay-and-sum (DAS) are lost at high aberration strengths. For instance, with an electronic aberration of 60 ns, the lateral resolution of DAS degrades by 17% while MV degrades by 73% with respect to the images with no aberration. Moreover, although ESMV shows robustness at low aberration levels, its degradation at higher aberrations is approximately the same as that of regular MV. It is also shown that basic PAC methods improve the aberrated MV beamformer. For example, in the case of electronic aberration, multi-lag reduces degradation in lateral resolution from 73% to 28% and contrast loss from 85% to 25%. These enhancements allow the combination of MV and PAC to outperform DAS and PAC and ESMV in moderate and strong aberrations. We conclude that the effect of aberration on the MV beamformer is stronger than previously reported in the literature and that PAC is needed to improve its clinical potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黄豆完成签到,获得积分10
刚刚
沟通亿心完成签到,获得积分10
刚刚
jacobian完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
fuluyuzhe_668完成签到,获得积分10
3秒前
3秒前
怎么办完成签到 ,获得积分10
3秒前
天玄完成签到 ,获得积分10
3秒前
spinon完成签到,获得积分10
4秒前
gougou发布了新的文献求助10
4秒前
4秒前
苏素完成签到,获得积分10
5秒前
DrLin完成签到 ,获得积分10
5秒前
彼方完成签到,获得积分10
5秒前
小胖wwwww完成签到 ,获得积分10
5秒前
杨丽完成签到,获得积分10
5秒前
7秒前
7秒前
MrChew完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
Savitr发布了新的文献求助10
8秒前
木康薛完成签到,获得积分10
9秒前
黄鹂完成签到,获得积分10
9秒前
阿呷惹完成签到,获得积分10
11秒前
scarlet完成签到 ,获得积分10
12秒前
俏皮诺言发布了新的文献求助10
12秒前
清脆的秋寒完成签到,获得积分10
13秒前
果茶去冰完成签到 ,获得积分10
13秒前
momoni完成签到 ,获得积分10
13秒前
天明完成签到,获得积分10
14秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
14秒前
迟宏珈完成签到,获得积分10
14秒前
啦啦啦123完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715621
求助须知:如何正确求助?哪些是违规求助? 5235764
关于积分的说明 15274658
捐赠科研通 4866353
什么是DOI,文献DOI怎么找? 2612926
邀请新用户注册赠送积分活动 1563081
关于科研通互助平台的介绍 1520565