Double-loop learning in project environments: An implementation approach

计算机科学 基于项目的学习 文档 项目管理 过程(计算) 透视图(图形) 知识管理 过程管理 人工智能 系统工程 政治学 法学 业务 程序设计语言 工程类 操作系统
作者
Benjamin Matthies,André Coners
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:96: 330-346 被引量:8
标识
DOI:10.1016/j.eswa.2017.12.012
摘要

Project-based learning is based on the idea of iteratively learning for future projects from the successes and failures of past projects. This paper proposes a semi-automated implementation approach for double-loop learning in project environments. A combined application of two complementary methods is suggested for this purpose: Latent Semantic Analysis (LSA) and Analytic Network Process (ANP). By this means, the approach addresses two problems of the project management practice. First, the information overload in project environments, whereby the LSA is used for the semi-automated extraction of lessons learned from large collections of textual project documentation. Second, the lack of procedures and methods for the practical implementation of available project knowledge, whereby the ANP is used for the systematic modeling of extracted lessons learned and their integration into the evaluation of project concepts and current project management routines. Thus, the proposed implementation approach improves the ability of project-based organizations to consequently learn from past failures or successes. From a practical perspective, evident shortcomings of existing computerized double-loop learning approaches are addressed. The proposed approach contributes to the project management practice not only by demonstrating a solution for the exploration of representative and potentially new lessons from multiple combined experience reports, but also by presenting a solution for the systematic assessment of such project-governing variables and their mutual relationships as part of the decision-making in new projects. From a theoretical perspective, specific research avenues for further development of the double-loop learning concept by means of expert and intelligent systems are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得50
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
刚刚
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
所所应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
222完成签到,获得积分20
2秒前
3秒前
BEGIN完成签到,获得积分10
4秒前
DH发布了新的文献求助10
6秒前
zlc完成签到,获得积分10
6秒前
liwang完成签到,获得积分10
7秒前
Jonathan完成签到,获得积分10
7秒前
羊羊发布了新的文献求助10
8秒前
榛糕李完成签到,获得积分10
9秒前
健忘芹完成签到,获得积分20
9秒前
9秒前
10秒前
bkagyin应助摆哥采纳,获得10
11秒前
刘宸希完成签到 ,获得积分10
11秒前
13秒前
辛勤夜柳发布了新的文献求助10
13秒前
14秒前
15秒前
打打应助怕孤独的海瑶采纳,获得10
15秒前
Zenia应助小鱼采纳,获得10
16秒前
16秒前
默默的斑马完成签到,获得积分10
16秒前
科研大印发布了新的文献求助10
17秒前
Lucas应助RunsenXu采纳,获得10
17秒前
科研通AI6应助www采纳,获得10
17秒前
shuang完成签到 ,获得积分10
18秒前
Ysk完成签到,获得积分10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544