纳米凝胶
聚合物
材料科学
中子散射
药物输送
分子动力学
化学工程
纳米技术
化学
散射
物理
计算化学
光学
复合材料
工程类
作者
Guangmin Wei,Vivek M. Prabhu,Victoria A. Piunova,Amber C. Carr,William C. Swope,Robert D. Miller
出处
期刊:Macromolecules
[American Chemical Society]
日期:2017-12-05
卷期号:50 (24): 9702-9712
被引量:7
标识
DOI:10.1021/acs.macromol.7b02061
摘要
Star polymers with a cross-linked nanogel core are promising carriers of cargo for therapeutic applications due to the synthetic control of amphiphilicity of arms and stability at infinite dilution. Three nanogel-core star polymers were investigated to understand how the arm-block chemical structure controls loading efficiency of a model drug, ibuprofen, and its spatial distribution. The spatial distribution profiles of hydrophobic core, hydrophilic corona, and encapsulated drug were determined by small-angle neutron scattering (SANS). SANS provides the nanometer-scale sensitivity to determine how the arm-block chemistry enhances the sequestering of ibuprofen. Validated molecular dynamics simulations capture the trends in drug profile and polymer segment distribution with further details on drug orientation distribution. This work provides a basis to study structure–function relationships in macromolecular-based carriers of cargo and represents a path toward validated and predictive simulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI