水下
计算机科学
航程(航空)
背景(考古学)
深度学习
人工智能
人工神经网络
估计
深层神经网络
水声学
声学
计算机视觉
地质学
工程类
航空航天工程
古生物学
海洋学
物理
系统工程
作者
Ludwig Houégnigan,Pooyan Safari,Climent Nadeu,M. André,Mike van der Schaar
标识
DOI:10.1109/rioacoustics.2017.8349716
摘要
This paper introduces ongoing experiments and early results for the underwater localization and range estimation of acoustic sources. Beyond classical results obtained for direction of arrival estimation, results concerning range estimation using supervised learning with neural networks having both shallow and deep architectures are presented. The developed method is applicable in the context of a single sensor, a compact array, or a small aperture towed array and provided results with great potential both for industrial impact and for the conservation and density estimation of cetaceans. With an average error of 4.3% and 3.5%-respectively for a shallow and for a deep pre-trained architecture-for ranges up to 8 kilometers and consistently below 300 meters, the system provides robust estimates suitable for an automated real-time solution.
科研通智能强力驱动
Strongly Powered by AbleSci AI