Deep learning-based facial expression recognition for monitoring neurological disorders

面部表情 人工智能 计算机科学 模式识别(心理学) 三维人脸识别 面部表情识别 幻觉 表达式(计算机科学) 面部动作编码系统 面部识别系统 计算机视觉 深度学习 语音识别 人脸检测 程序设计语言
作者
Gözde Yolcu,İsmail Öztel,Serap Kazan,Cemil Öz,Kannappan Palaniappan,Teresa E. Lever,Filiz Bunyak
标识
DOI:10.1109/bibm.2017.8217907
摘要

Facial expressions play an important role in communication. Impaired facial expression is a common sign of numerous medical conditions, particularly neurological disorders. Accurate automated systems are needed to recognize facial expressions and to reveal valuable information that can be used for diagnosis and monitoring of neurological disorders. This paper presents a novel deep learning approach for automatic facial expression recognition. The proposed architecture first segments the facial components known to be important for facial expression recognition and forms an iconized image; then performs facial expression classification using the obtained iconized facial components image combined with the raw facial images. This approach integrates local part-based features with holistic facial information for robust facial expression recognition. Preliminary experimental results using the proposed system achieved 93.43% facial expression recognition accuracy, more than 6% accuracy improvement compared to facial expression recognition from raw input images. The goal of the proposed study is design of a noninvasive, objective, and quantitative facial expression recognition system to assist diagnosis and monitoring of neurological disorders affecting facial expressions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyan123完成签到,获得积分10
刚刚
1秒前
4秒前
困困包发布了新的文献求助30
6秒前
冷艳的靳发布了新的文献求助10
7秒前
然12138发布了新的文献求助10
7秒前
8秒前
9秒前
天份z发布了新的文献求助10
10秒前
浮游应助开心采纳,获得10
14秒前
大芳儿发布了新的文献求助10
15秒前
Xjx6519发布了新的文献求助10
15秒前
浮游应助明亮紫易采纳,获得10
15秒前
17秒前
Tcell完成签到,获得积分10
22秒前
胡图图发布了新的文献求助10
22秒前
无极微光应助科研通管家采纳,获得20
23秒前
pluto应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
shhoing应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
23秒前
玄风应助科研通管家采纳,获得10
23秒前
BowieHuang应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
张宇豪应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
玄风应助科研通管家采纳,获得10
24秒前
Verity应助科研通管家采纳,获得10
24秒前
厚朴应助开心采纳,获得10
25秒前
大龙哥886应助Xjx6519采纳,获得10
28秒前
在水一方应助zgsjymysmyy采纳,获得30
28秒前
echo发布了新的文献求助10
29秒前
29秒前
zhoumaoyuan发布了新的文献求助10
30秒前
天份z完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566