作者
Bin Wen,Nan Zhang,Shi-Rong Jin,Zai‐Zhong Chen,Jian‐Zhong Gao,Ying Liu,Han-Peng Liu,Zhe Xu
摘要
Knowledge on the impacts of microplastics (MPs) pollution on freshwater environments and biota remains limited. Meanwhile, freshwater ecosystems have been threatened by elevated temperatures caused by climate change. To date, no information exists on how MPs—especially under elevated temperature conditions—affect predatory performance, digestive processes and metabolic pathways in freshwater organisms. Here, we examined MPs, elevated temperature and their combined effects on juveniles (0+ group) of an Amazonian cichlid, the discus fish (Symphysodon aequifasciatus). For 30 days, fish were exposed to ambient or elevated temperatures (i.e., 28 or 31 °C) in the absence or presence of MPs (i.e., 0 or 200 μg/L). The following metrics were quantified: MPs accumulation; predatory performance; and biomarkers involved in neurotransmission, digestion and energy production. The results showed that survival rate and body length were not affected by MPs, elevated temperatures or their combination. Elevated temperatures resulted in an increase in MP concentrations in fish bodies. Exposure to MPs decreased the post-exposure predatory performance (PEPP) at ambient temperatures but not at elevated temperatures. Elevated temperatures, however, had no effect on the PEPP but antagonistically interacted with MPs, leading to similar predatory performances under present and future conditions. Acetylcholinesterase (AChE) activity was only affected by MPs and decreased in the presence of MPs, indicating adverse effects in nervous and neuromuscular function and, thus, potentially in predatory performance. Trypsin activity was only influenced by MPs and decreased during exposure to MPs. Elevated temperatures or MPs alone increased the amylase activity but interacted antagonistically. Lipase activity was not influenced by either of the two stressors. In contrast, alkaline phosphatase (ALP) activity was affected by MPs or elevated temperatures alone and decreased with both stressors. Such results indicate deficits in the digestive capabilities of early-stage S. aequifasciatus under elevated temperature conditions and especially during exposure to MPs. Electron transport system (ETS) activity was not influenced by either of the two stressors. Both elevated temperatures and MPs alone increased LDH activity; however, the interaction between the two stressors cancelled activity but was still higher than activity in present conditions. Citrate synthase (CS) activity decreased with elevated temperature but increased during exposure to MPs. Cytochrome c oxidase (COX) activity was only influenced by MPs and increased in the presence of MPs. Thus, S. aequifasciatus juveniles exposed to elevated temperatures and MPs not only relied on anaerobic glycolysis for energy production but also depended on aerobic metabolism in the presence of MPs. Overall, these findings suggested that MPs showed a greater impact than elevated temperatures on the predatory performance, digestion and energy production of S. aequifasciatus. Nevertheless, juvenile survival and growth were minimally impacted, and thus, S. aequifasciatus could cope with near-future temperature increases and MP exposure.