All-at-once approach to multifidelity polynomial chaos expansion surrogate modeling

多项式混沌 替代模型 混沌(操作系统) 应用数学 多项式的 数学 替代数据 数学优化 统计物理学 计算机科学 物理 数学分析 非线性系统 统计 量子力学 计算机安全 蒙特卡罗方法
作者
Dean E. Bryson,Markus P. Rumpfkeil
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:70: 121-136 被引量:29
标识
DOI:10.1016/j.ast.2017.07.043
摘要

Abstract A new approach to multifidelity, gradient-enhanced surrogate modeling using polynomial chaos expansions is presented. This approach seeks complementary additive and multiplicative corrections to low-fidelity data whereas current hybrid methods in the literature attempt to balance individually calculated calibrations. An advantage of the new approach is that least squares-optimal coefficients for both corrections and the model of interest are determined simultaneously using the high-fidelity data directly in the final surrogate. The proposed technique is compared to the weighted approach for three analytic functions and the numerical simulation of a vehicle's lift coefficient using Cartesian Euler CFD and panel aerodynamics. Investigation of the individual correction terms indicates the advantage of the proposed approach is that complementary calibrations separately adjust the low-fidelity data in local regions based on agreement or disagreement between the two fidelities. In cases where polynomials are suitable approximations to the true function, the new all-at-once approach is found to reduce error in the surrogate faster than the method of weighted combinations. When the low-fidelity is a good approximation of the true function, the proposed technique out-performs monofidelity approximations as well. Sparse grid constructions alleviate the growth of the training set as root-mean-square-error is calculated for increasingly higher polynomial orders. Utilizing gradient information provides an advantage at lower training grid levels for low-dimensional spaces, but worsens numerical conditioning of the system in higher dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林夕夕完成签到,获得积分10
4秒前
5秒前
7秒前
7秒前
8秒前
手机应助魏凌飞采纳,获得10
9秒前
Season发布了新的文献求助10
9秒前
Billy应助wudiii233采纳,获得30
10秒前
儒雅的冬易完成签到,获得积分10
10秒前
12秒前
俏皮荔枝发布了新的文献求助10
13秒前
13秒前
ZNN1234发布了新的文献求助10
13秒前
隐形曼青应助研友_84W7RZ采纳,获得10
13秒前
贪玩的寄松完成签到,获得积分10
14秒前
绝世容颜完成签到,获得积分10
15秒前
周胖胖发布了新的文献求助10
18秒前
18秒前
Wenhao Zhao完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
眯眯眼的黎昕完成签到 ,获得积分10
19秒前
共享精神应助跳跃的冷雁采纳,获得10
25秒前
yangjoy完成签到,获得积分10
27秒前
27秒前
ZNN1234完成签到,获得积分20
28秒前
毛豆应助完美的仰采纳,获得20
28秒前
29秒前
什么都会过应助Dr.c采纳,获得10
30秒前
爆米花完成签到,获得积分10
34秒前
犹豫酸奶发布了新的文献求助10
35秒前
alexyang完成签到,获得积分10
36秒前
37秒前
ding应助小赵采纳,获得10
38秒前
38秒前
知了完成签到,获得积分10
39秒前
40秒前
40秒前
41秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267842
求助须知:如何正确求助?哪些是违规求助? 2907235
关于积分的说明 8341214
捐赠科研通 2577922
什么是DOI,文献DOI怎么找? 1401302
科研通“疑难数据库(出版商)”最低求助积分说明 655029
邀请新用户注册赠送积分活动 634046