All-at-once approach to multifidelity polynomial chaos expansion surrogate modeling

多项式混沌 替代模型 混沌(操作系统) 应用数学 多项式的 数学 替代数据 数学优化 统计物理学 计算机科学 物理 数学分析 非线性系统 统计 量子力学 计算机安全 蒙特卡罗方法
作者
Dean E. Bryson,Markus P. Rumpfkeil
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:70: 121-136 被引量:29
标识
DOI:10.1016/j.ast.2017.07.043
摘要

Abstract A new approach to multifidelity, gradient-enhanced surrogate modeling using polynomial chaos expansions is presented. This approach seeks complementary additive and multiplicative corrections to low-fidelity data whereas current hybrid methods in the literature attempt to balance individually calculated calibrations. An advantage of the new approach is that least squares-optimal coefficients for both corrections and the model of interest are determined simultaneously using the high-fidelity data directly in the final surrogate. The proposed technique is compared to the weighted approach for three analytic functions and the numerical simulation of a vehicle's lift coefficient using Cartesian Euler CFD and panel aerodynamics. Investigation of the individual correction terms indicates the advantage of the proposed approach is that complementary calibrations separately adjust the low-fidelity data in local regions based on agreement or disagreement between the two fidelities. In cases where polynomials are suitable approximations to the true function, the new all-at-once approach is found to reduce error in the surrogate faster than the method of weighted combinations. When the low-fidelity is a good approximation of the true function, the proposed technique out-performs monofidelity approximations as well. Sparse grid constructions alleviate the growth of the training set as root-mean-square-error is calculated for increasingly higher polynomial orders. Utilizing gradient information provides an advantage at lower training grid levels for low-dimensional spaces, but worsens numerical conditioning of the system in higher dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Xiangyang完成签到,获得积分10
2秒前
3秒前
3秒前
e任思发布了新的文献求助10
3秒前
4秒前
英姑应助qi采纳,获得10
4秒前
Lny应助niko采纳,获得10
4秒前
5秒前
mmol发布了新的文献求助10
5秒前
yusheng发布了新的文献求助10
5秒前
熊啾啾发布了新的文献求助10
5秒前
坦率的匪发布了新的文献求助30
5秒前
Orange应助Amira采纳,获得10
6秒前
sanmumu完成签到,获得积分10
6秒前
纯真心情发布了新的文献求助10
6秒前
十一发布了新的文献求助10
6秒前
7秒前
研友_VZG7GZ应助泽丶采纳,获得10
7秒前
mwx应助SMU_mr_student采纳,获得10
7秒前
Mic应助明理的凌兰采纳,获得10
8秒前
今后应助李联洪采纳,获得10
8秒前
8秒前
billows发布了新的文献求助10
8秒前
9秒前
思源应助晓明拥抱世界采纳,获得10
9秒前
潇涯应助听闻墨笙采纳,获得20
9秒前
9秒前
科目三应助动听白秋采纳,获得10
10秒前
10秒前
天天快乐应助Xiangyang采纳,获得10
10秒前
念心发布了新的文献求助20
10秒前
星辰大海应助孤独的问凝采纳,获得10
11秒前
11秒前
玩命的囧发布了新的文献求助10
11秒前
阿凡达发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531486
求助须知:如何正确求助?哪些是违规求助? 4620295
关于积分的说明 14572638
捐赠科研通 4559928
什么是DOI,文献DOI怎么找? 2498650
邀请新用户注册赠送积分活动 1478588
关于科研通互助平台的介绍 1449980