A comprehensive analysis about thermal conductivity of multi-layer graphene with N-doping, -CH3 group, and single vacancy

空位缺陷 热导率 石墨烯 材料科学 凝聚态物理 声子 兴奋剂 声子散射 纳米技术 物理 光电子学 复合材料
作者
Chao Si,Liang Li,Gui Lu,Bing‐Yang Cao,Xiao‐Dong Wang,Zhen Fan,Zhihai Feng
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:123 (13) 被引量:11
标识
DOI:10.1063/1.5010091
摘要

Graphene has received great attention due to its fascinating thermal properties. The inevitable defects in graphene, such as single vacancy, doping, and functional group, greatly affect the thermal conductivity. The sole effect of these defects on the thermal conductivity has been widely studied, while the mechanisms of the coupling effects are still open. We studied the combined effect of defects with N-doping, the -CH3 group, and single vacancy on the thermal conductivity of multi-layer graphene at various temperatures using equilibrium molecular dynamics with the Green-Kubo theory. The Taguchi orthogonal algorithm is used to evaluate the sensitivity of N-doping, the -CH3 group, and single vacancy. Sole factor analysis shows that the effect of single vacancy on thermal conductivity is always the strongest at 300 K, 700 K, and 1500 K. However, for the graphene with three defects, the single vacancy defect only plays a significant role in the thermal conductivity modification at 300 K and 700 K, while the -CH3 group dominates the thermal conductivity reduction at 1500 K. The phonon dispersion is calculated using a spectral energy density approach to explain such a temperature dependence. The combined effect of the three defects further decreases the thermal conductivity compared to any sole defect at both 300 K and 700 K. The weaker single vacancy effect is due to the stronger Umklapp scattering at 1500 K, at which the combined effect seriously covers almost all the energy gaps in the phonon dispersion relation, significantly reducing the phonon lifetimes. Therefore, the temperature dependence only appears on the multi-layer graphene with combined defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jzj完成签到 ,获得积分10
1秒前
4秒前
5秒前
努斯关注了科研通微信公众号
5秒前
yy发布了新的文献求助10
7秒前
科研通AI2S应助执着采纳,获得10
7秒前
糖糖完成签到 ,获得积分10
8秒前
9秒前
小崎完成签到,获得积分10
10秒前
sunshine完成签到,获得积分10
10秒前
sxj发布了新的文献求助10
10秒前
13秒前
风之谷完成签到,获得积分10
13秒前
14秒前
苗苗会喵喵完成签到,获得积分10
16秒前
思之若琴完成签到,获得积分10
18秒前
倪倪发布了新的文献求助10
18秒前
19秒前
共享精神应助研友_LMBAXn采纳,获得10
19秒前
duoduo完成签到,获得积分10
19秒前
娃哈哈发布了新的文献求助10
20秒前
Coffey完成签到 ,获得积分10
21秒前
科研螺丝完成签到 ,获得积分10
22秒前
慧慧子完成签到 ,获得积分10
22秒前
英俊的铭应助RN采纳,获得10
24秒前
24秒前
清冽草木风关注了科研通微信公众号
24秒前
努斯发布了新的文献求助30
25秒前
bvh关闭了bvh文献求助
25秒前
不想长大完成签到 ,获得积分10
25秒前
liang完成签到 ,获得积分10
26秒前
隐形曼青应助贪玩嫣采纳,获得10
29秒前
Aries完成签到,获得积分10
29秒前
juni12应助wzhang采纳,获得10
29秒前
自觉馒头应助lucky采纳,获得10
30秒前
里里发布了新的文献求助10
30秒前
Leisure_Lee完成签到,获得积分10
31秒前
暗淡宇宙的蓝点完成签到,获得积分10
31秒前
genomed应助doctorw采纳,获得10
31秒前
慕青应助破茧采纳,获得10
33秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112109
求助须知:如何正确求助?哪些是违规求助? 2762259
关于积分的说明 7669812
捐赠科研通 2417362
什么是DOI,文献DOI怎么找? 1283102
科研通“疑难数据库(出版商)”最低求助积分说明 619297
版权声明 599583