A comprehensive analysis about thermal conductivity of multi-layer graphene with N-doping, -CH3 group, and single vacancy

空位缺陷 热导率 石墨烯 材料科学 凝聚态物理 声子 兴奋剂 声子散射 纳米技术 物理 光电子学 复合材料
作者
Chao Si,Liang Li,Gui Lu,Bing‐Yang Cao,Xiao‐Dong Wang,Zhen Fan,Zhihai Feng
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:123 (13) 被引量:11
标识
DOI:10.1063/1.5010091
摘要

Graphene has received great attention due to its fascinating thermal properties. The inevitable defects in graphene, such as single vacancy, doping, and functional group, greatly affect the thermal conductivity. The sole effect of these defects on the thermal conductivity has been widely studied, while the mechanisms of the coupling effects are still open. We studied the combined effect of defects with N-doping, the -CH3 group, and single vacancy on the thermal conductivity of multi-layer graphene at various temperatures using equilibrium molecular dynamics with the Green-Kubo theory. The Taguchi orthogonal algorithm is used to evaluate the sensitivity of N-doping, the -CH3 group, and single vacancy. Sole factor analysis shows that the effect of single vacancy on thermal conductivity is always the strongest at 300 K, 700 K, and 1500 K. However, for the graphene with three defects, the single vacancy defect only plays a significant role in the thermal conductivity modification at 300 K and 700 K, while the -CH3 group dominates the thermal conductivity reduction at 1500 K. The phonon dispersion is calculated using a spectral energy density approach to explain such a temperature dependence. The combined effect of the three defects further decreases the thermal conductivity compared to any sole defect at both 300 K and 700 K. The weaker single vacancy effect is due to the stronger Umklapp scattering at 1500 K, at which the combined effect seriously covers almost all the energy gaps in the phonon dispersion relation, significantly reducing the phonon lifetimes. Therefore, the temperature dependence only appears on the multi-layer graphene with combined defects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Anna完成签到,获得积分20
1秒前
上官若男应助奥特斌采纳,获得10
1秒前
1秒前
阿司匹林发布了新的文献求助10
2秒前
wwewew完成签到,获得积分10
2秒前
稳重可兰发布了新的文献求助10
2秒前
李治海完成签到,获得积分10
2秒前
胖头鱼完成签到,获得积分10
2秒前
大鱼完成签到 ,获得积分10
3秒前
sci完成签到,获得积分10
3秒前
科研通AI6应助山大琦子采纳,获得10
4秒前
flysky120完成签到,获得积分10
4秒前
啦啦啦发布了新的文献求助10
4秒前
红烧肉耶完成签到 ,获得积分10
4秒前
二零二六完成签到 ,获得积分10
4秒前
tumatto发布了新的文献求助10
5秒前
招水若离完成签到,获得积分0
5秒前
无花果应助Wei采纳,获得10
5秒前
rabbit完成签到,获得积分10
5秒前
今后应助时丶倾采纳,获得10
5秒前
5秒前
小h发布了新的文献求助10
6秒前
山楂球发布了新的文献求助10
6秒前
6秒前
落后凌晴完成签到 ,获得积分10
6秒前
打打应助虎虎虎采纳,获得10
6秒前
大美女完成签到,获得积分10
6秒前
可爱的函函应助LL采纳,获得10
6秒前
6秒前
6秒前
张懒懒发布了新的文献求助10
6秒前
你好发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
Anna发布了新的文献求助10
9秒前
wnan_07完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647168
求助须知:如何正确求助?哪些是违规求助? 4773018
关于积分的说明 15038081
捐赠科研通 4805852
什么是DOI,文献DOI怎么找? 2570007
邀请新用户注册赠送积分活动 1526881
关于科研通互助平台的介绍 1485983