A comprehensive analysis about thermal conductivity of multi-layer graphene with N-doping, -CH3 group, and single vacancy

空位缺陷 热导率 石墨烯 材料科学 凝聚态物理 声子 兴奋剂 声子散射 纳米技术 物理 光电子学 复合材料
作者
Chao Si,Liang Li,Gui Lu,Bing‐Yang Cao,Xiao‐Dong Wang,Zhen Fan,Zhihai Feng
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:123 (13) 被引量:11
标识
DOI:10.1063/1.5010091
摘要

Graphene has received great attention due to its fascinating thermal properties. The inevitable defects in graphene, such as single vacancy, doping, and functional group, greatly affect the thermal conductivity. The sole effect of these defects on the thermal conductivity has been widely studied, while the mechanisms of the coupling effects are still open. We studied the combined effect of defects with N-doping, the -CH3 group, and single vacancy on the thermal conductivity of multi-layer graphene at various temperatures using equilibrium molecular dynamics with the Green-Kubo theory. The Taguchi orthogonal algorithm is used to evaluate the sensitivity of N-doping, the -CH3 group, and single vacancy. Sole factor analysis shows that the effect of single vacancy on thermal conductivity is always the strongest at 300 K, 700 K, and 1500 K. However, for the graphene with three defects, the single vacancy defect only plays a significant role in the thermal conductivity modification at 300 K and 700 K, while the -CH3 group dominates the thermal conductivity reduction at 1500 K. The phonon dispersion is calculated using a spectral energy density approach to explain such a temperature dependence. The combined effect of the three defects further decreases the thermal conductivity compared to any sole defect at both 300 K and 700 K. The weaker single vacancy effect is due to the stronger Umklapp scattering at 1500 K, at which the combined effect seriously covers almost all the energy gaps in the phonon dispersion relation, significantly reducing the phonon lifetimes. Therefore, the temperature dependence only appears on the multi-layer graphene with combined defects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
第二十篇完成签到,获得积分10
1秒前
吴欣彤发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
獭祭鱼发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
彭于晏应助俊逸幻柏采纳,获得10
3秒前
脑洞疼应助蚊香液采纳,获得10
3秒前
4秒前
4秒前
5秒前
6秒前
无情碧灵发布了新的文献求助10
6秒前
背后青筠发布了新的文献求助10
6秒前
Eourique完成签到,获得积分20
6秒前
lwz关闭了lwz文献求助
7秒前
7秒前
温暖宛筠发布了新的文献求助10
8秒前
murron完成签到,获得积分10
8秒前
虞丹萱发布了新的文献求助10
8秒前
ym发布了新的文献求助10
8秒前
SHI关闭了SHI文献求助
8秒前
Barnett发布了新的文献求助10
8秒前
椰茶发布了新的文献求助50
9秒前
科研小白发布了新的文献求助10
9秒前
Nature应助祁尒采纳,获得10
9秒前
蔡丽露完成签到,获得积分10
9秒前
10秒前
ttt发布了新的文献求助10
11秒前
加油少年发布了新的文献求助10
11秒前
ctttt发布了新的文献求助10
11秒前
12秒前
Lucas应助鱿鱼采纳,获得10
12秒前
miemiemie94完成签到,获得积分20
13秒前
v啦啦啦啦发布了新的文献求助10
13秒前
13秒前
吴畅发布了新的文献求助10
14秒前
冷静完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482