Bare and polymer coated iron oxide superparamagnetic nanoparticles for effective removal of U (VI) from acidic and neutral aqueous medium

超顺磁性 聚丙烯酸 纳米颗粒 铀酰 表面电荷 水溶液 Zeta电位 化学 吸附 氢氧化物 无机化学 化学工程 表面改性 粒子(生态学) 聚合物 核化学 材料科学 纳米技术 离子 磁化 有机化学 物理化学 量子力学 工程类 地质学 物理 磁场 海洋学
作者
Shan Zhu,Yangchun Leng,Minhao Yan,Xianguo Tuo,Jianbo Yang,László Almásy,Qiang Tian,Guangai Sun,Lin Zou,Qintang Li,Jérémie Courtois,Zhang Hong
出处
期刊:Applied Surface Science [Elsevier]
卷期号:447: 381-387 被引量:24
标识
DOI:10.1016/j.apsusc.2018.04.016
摘要

Superparamagnetic {\gamma}-Fe2O3 nanoparticles (5 nm diameter) were synthesized in water. The bare particles exhibit good colloidal stability at ~ pH 2 because of the strong electrostatic repulsion with a surface charge of +25 mV. The polyacrylic acid (PAA)-coated particles exhibit remarkable colloidal stability at ~ pH 7 with abundant free carboxyl groups as reactive sites for subsequent functionalization. In this work, we used zeta potential analysis, transmission electron microscopy, small angle X-ray scattering, and Inductively coupled plasma mass spectrometry to investigate the adsorption behavior of U (VI) on bare and coated colloidal superparamagnetic nanoparticles at pH 2 and pH 7. At pH 2, uranyl ion (UO22+) absorbed on the surface of the bare particles with decreasing particle surface charge. This induced particle agglomeration. At pH 7, uranyl ion (UO22+) hydrolyzed and formed plate-like particles of uranium hydroxide that were ~ 50 nm in diameter. The PAA-coated iron oxide nanoparticles absorbed on the surface of these U (VI) hydroxide plates to form large aggregates that precipitate to the bottom of the dispersion. At both pH 2 and pH 7, the resulting U (VI)/nanoparticle complex can be easily collected and extracted from the aqueous environment via an external magnetic field. The results show that both bare and polymer-coated superparamagnetic {\gamma}-Fe2O3 nanoparticles are potential absorbents for removing U (VI) from water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助永远少年采纳,获得10
刚刚
meng发布了新的文献求助10
2秒前
科研通AI5应助贪吃的猴子采纳,获得10
4秒前
4秒前
可爱的彩虹完成签到,获得积分10
4秒前
小确幸完成签到,获得积分10
4秒前
彭于晏应助毛毛虫采纳,获得10
5秒前
LilyChen完成签到 ,获得积分10
5秒前
Owen应助Su采纳,获得10
5秒前
5秒前
5秒前
6秒前
7秒前
yyyy关注了科研通微信公众号
7秒前
Jane完成签到 ,获得积分10
8秒前
8秒前
8秒前
kento发布了新的文献求助30
8秒前
Akim应助balzacsun采纳,获得10
9秒前
狼来了aas发布了新的文献求助10
9秒前
10秒前
didi完成签到,获得积分10
10秒前
嘻嘻发布了新的文献求助10
12秒前
冲冲冲完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
善良身影完成签到,获得积分10
15秒前
天天快乐应助郭豪琪采纳,获得10
16秒前
13679165979发布了新的文献求助10
18秒前
13679165979发布了新的文献求助10
18秒前
13679165979发布了新的文献求助10
18秒前
13679165979发布了新的文献求助10
18秒前
13679165979发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824