聚酰亚胺
渗透
巴勒
选择性
膜
乙醚
四氢呋喃
化学工程
聚合物
高分子化学
气体分离
溶剂
材料科学
化学
有机化学
催化作用
生物化学
图层(电子)
工程类
作者
Dongyun Wu,Chunhai Yi,Yixuan Wang,Suitao Qi,Bolun Yang
标识
DOI:10.1016/j.memsci.2018.01.028
摘要
Abstract In present work, crown ether-containing co-polyimide with improved gas permselectivity was developed for CO2/N2 and CO2/CH4 separation. Crown ether segment grants the co-polyimide material good affinity with CO2 as well as strong rigidity of polymer chain. This co-polyimide was prepared by the condensation polymerization and chemical imidization of 4, 4-hexafluoro-isopropylidene diphthalic anhydride, 4, 4′-diaminodiphenylmethane and trans-di(aminobenze)-18-C-6 (trans-DAB18C6). The synthesized materials were characterized by FT-IR, 1H NMR, XRD, TGA, DSC, GPC and electronic tensile machine. The fractional free volume (FFV) and fractional accessible volume (FAV) were calculated with molecular dynamics simulations. The mixed-gas permeation properties of the co-polyimide membranes were investigated to inspect the influence of trans-DAB18C6 content and feed gas pressure. Effects of testing temperature and humidity, casting solvent on membrane with 25 mol% trans-DAB18C6 were investigated. The molecular dynamics simulations results showed that ( FAV ) CO 2 decreased, while the ratios of ( FAV ) CO 2 / ( FAV ) N 2 and ( FAV ) CO 2 / ( FAV ) CH 4 increased progressively with trans-DAB18C6 content. The CO2 permeability increased firstly, and decreased subsequently with trans-DAB18C6 content. At the same time, both CO2/N2 and CO2/CH4 selectivities increased progressively. The co-polyimide membrane with 25 mol% trans-DAB18C6 displayed the maximum CO2 permeability of 109.0 barrer and CO2/CH4 selectivity of 92.7, which surpassed the 2008 Robeson upper bound. The long term operation stability study demonstrated that the membrane had good stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI