作者
Bing Xu,Mingzuo Jiang,Yi Chu,Weijie Wang,Di Chen,Xiaowei Li,Zhao Zhang,Di Zhang,Daiming Fan,Yongzhan Nie,Feng Shao,Kaichun Wu,Jie Liang
摘要
•Hepatic N-terminal cleavage fragments of GSDMD (GSDMD-N) are associated with lobular inflammation and hepatic ballooning. •GSDMD-N is a potential biomarker for the diagnosis of non-alcoholic steatohepatitis. •GSDMD plays a key role in steatohepatitis by mediating macrophage infiltration, NF-ĸB activation and lipogenesis. Background & Aims Gasdermin D (GSDMD)-executed programmed necrosis is involved in inflammation and controls interleukin (IL)-1β release. However, the role of GSDMD in non-alcoholic steatohepatitis (NASH) remains unclear. We investigated the role of GSDMD in the pathogenesis of steatohepatitis. Methods Human liver tissues from patients with non-alcoholic fatty liver disease (NAFLD) and control individuals were obtained to evaluate GSDMD expression. Gsdmd knockout (Gsdmd−/−) mice, obese db/db mice and their wild-type (WT) littermates were fed with methionine-choline deficient (MCD) or control diet to induce steatohepatitis. The Gsdmd−/− and WT mice were also used in a high-fat diet (HFD)-induced NAFLD model. In addition, Alb-Cre mice were administered an adeno-associated virus (AAV) vector that expressed the gasdermin-N domain (AAV9-FLEX-GSDMD-N) and were fed with either MCD or control diet for 10 days. Results GSDMD and its pyroptosis-inducing fragment GSDMD-N were upregulated in liver tissues of human NAFLD/NASH. Importantly, hepatic GSDMD-N protein levels were significantly higher in human NASH and correlated with the NAFLD activity score and fibrosis. GSDMD-N remained a potential biomarker for the diagnosis of NASH. MCD-fed Gsdmd−/− mice exhibit decreased severity of steatosis and inflammation compared with WT littermates. GSDMD was associated with the secretion of pro-inflammatory cytokines (IL-1β, TNF-α, and MCP-1 [CCL2]) and persistent activation of the NF-ĸB signaling pathway. Gsdmd−/− mice showed lower steatosis, mainly because of reduced expression of the lipogenic gene Srebp1c (Srebf1) and upregulated expression of lipolytic genes, including Pparα, Aco [Klk15], Lcad [Acadl], Cyp4a10 and Cyp4a14. Alb-Cre mice administered with AAV9-FLEX-GSDMD-N showed significantly aggravated steatohepatitis when fed with MCD diet. Conclusion As an executor of pyroptosis, GSDMD plays a key role in the pathogenesis of steatohepatitis, by controlling cytokine secretion, NF-ĸB activation, and lipogenesis. Lay summary Non-alcoholic fatty liver disease has become one of the most feared chronic liver diseases, because it is the most rapidly growing indication for adult liver transplantation and a major cause of hepatocellular carcinoma. However, the mechanisms involved in the transformation of simple steatosis to steatohepatitis remain unclear. Herein, we show that gasdermin D driven pyroptosis is prominent in patients with non-alcoholic steatohepatitis (NASH), and gasdermin-N domain remains a potential biomarker for the diagnosis of NASH. Gasdermin D plays a key role in the pathogenesis of NASH by regulating lipogenesis, the inflammatory response, and the NF-ĸB signaling pathway, revealing potential treatment targets for NASH in humans. Gasdermin D (GSDMD)-executed programmed necrosis is involved in inflammation and controls interleukin (IL)-1β release. However, the role of GSDMD in non-alcoholic steatohepatitis (NASH) remains unclear. We investigated the role of GSDMD in the pathogenesis of steatohepatitis. Human liver tissues from patients with non-alcoholic fatty liver disease (NAFLD) and control individuals were obtained to evaluate GSDMD expression. Gsdmd knockout (Gsdmd−/−) mice, obese db/db mice and their wild-type (WT) littermates were fed with methionine-choline deficient (MCD) or control diet to induce steatohepatitis. The Gsdmd−/− and WT mice were also used in a high-fat diet (HFD)-induced NAFLD model. In addition, Alb-Cre mice were administered an adeno-associated virus (AAV) vector that expressed the gasdermin-N domain (AAV9-FLEX-GSDMD-N) and were fed with either MCD or control diet for 10 days. GSDMD and its pyroptosis-inducing fragment GSDMD-N were upregulated in liver tissues of human NAFLD/NASH. Importantly, hepatic GSDMD-N protein levels were significantly higher in human NASH and correlated with the NAFLD activity score and fibrosis. GSDMD-N remained a potential biomarker for the diagnosis of NASH. MCD-fed Gsdmd−/− mice exhibit decreased severity of steatosis and inflammation compared with WT littermates. GSDMD was associated with the secretion of pro-inflammatory cytokines (IL-1β, TNF-α, and MCP-1 [CCL2]) and persistent activation of the NF-ĸB signaling pathway. Gsdmd−/− mice showed lower steatosis, mainly because of reduced expression of the lipogenic gene Srebp1c (Srebf1) and upregulated expression of lipolytic genes, including Pparα, Aco [Klk15], Lcad [Acadl], Cyp4a10 and Cyp4a14. Alb-Cre mice administered with AAV9-FLEX-GSDMD-N showed significantly aggravated steatohepatitis when fed with MCD diet. As an executor of pyroptosis, GSDMD plays a key role in the pathogenesis of steatohepatitis, by controlling cytokine secretion, NF-ĸB activation, and lipogenesis.