Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study

医学 卷积神经网络 放射科 深度学习 动态对比度 人工智能 对比度(视觉) 磁共振成像 计算机科学
作者
Koichiro Yasaka,Hiroyuki Akai,Osamu Abe,Shigeru Kiryu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:286 (3): 887-896 被引量:629
标识
DOI:10.1148/radiol.2017170706
摘要

Purpose To investigate diagnostic performance by using a deep learning method with a convolutional neural network (CNN) for the differentiation of liver masses at dynamic contrast agent-enhanced computed tomography (CT). Materials and Methods This clinical retrospective study used CT image sets of liver masses over three phases (noncontrast-agent enhanced, arterial, and delayed). Masses were diagnosed according to five categories (category A, classic hepatocellular carcinomas [HCCs]; category B, malignant liver tumors other than classic and early HCCs; category C, indeterminate masses or mass-like lesions [including early HCCs and dysplastic nodules] and rare benign liver masses other than hemangiomas and cysts; category D, hemangiomas; and category E, cysts). Supervised training was performed by using 55 536 image sets obtained in 2013 (from 460 patients, 1068 sets were obtained and they were augmented by a factor of 52 [rotated, parallel-shifted, strongly enlarged, and noise-added images were generated from the original images]). The CNN was composed of six convolutional, three maximum pooling, and three fully connected layers. The CNN was tested with 100 liver mass image sets obtained in 2016 (74 men and 26 women; mean age, 66.4 years ± 10.6 [standard deviation]; mean mass size, 26.9 mm ± 25.9; 21, nine, 35, 20, and 15 liver masses for categories A, B, C, D, and E, respectively). Training and testing were performed five times. Accuracy for categorizing liver masses with CNN model and the area under receiver operating characteristic curve for differentiating categories A-B versus categories C-E were calculated. Results Median accuracy of differential diagnosis of liver masses for test data were 0.84. Median area under the receiver operating characteristic curve for differentiating categories A-B from C-E was 0.92. Conclusion Deep learning with CNN showed high diagnostic performance in differentiation of liver masses at dynamic CT. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊博士完成签到,获得积分10
1秒前
kkkkkkkkkkkk发布了新的文献求助10
1秒前
2秒前
Song完成签到,获得积分10
2秒前
liusui完成签到 ,获得积分10
2秒前
猴王完成签到,获得积分10
3秒前
寒冷的寒梦完成签到,获得积分10
5秒前
5秒前
中华有为完成签到,获得积分10
5秒前
调皮的蓝天完成签到 ,获得积分10
6秒前
源宝完成签到 ,获得积分10
6秒前
1210xi完成签到,获得积分10
6秒前
miku完成签到 ,获得积分10
7秒前
Jasper应助安详念蕾采纳,获得10
8秒前
Luvvv发布了新的文献求助10
9秒前
斯文败类应助zyn采纳,获得10
9秒前
10秒前
xiuxiuzhang完成签到 ,获得积分10
10秒前
VIEAAA完成签到,获得积分10
11秒前
小树发布了新的文献求助10
12秒前
希望天下0贩的0应助hyq采纳,获得10
13秒前
13秒前
顺利紫山完成签到,获得积分10
13秒前
adamchase完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
xxzw完成签到 ,获得积分10
15秒前
油面摊子完成签到,获得积分10
15秒前
jlk完成签到,获得积分10
15秒前
搞怪孤丝完成签到 ,获得积分10
16秒前
16秒前
CipherSage应助韩达大采纳,获得10
17秒前
17秒前
善学以致用应助田攀采纳,获得10
19秒前
ziyu发布了新的文献求助10
19秒前
19秒前
charon完成签到 ,获得积分10
20秒前
紫金之恋完成签到,获得积分10
21秒前
zyn发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600134
求助须知:如何正确求助?哪些是违规求助? 4685840
关于积分的说明 14839918
捐赠科研通 4675103
什么是DOI,文献DOI怎么找? 2538540
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471124