Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study

医学 卷积神经网络 放射科 深度学习 动态对比度 人工智能 对比度(视觉) 磁共振成像 计算机科学
作者
Koichiro Yasaka,Hiromu Akai,Osamu Abe,Shigeru Kiryu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:286 (3): 887-896 被引量:517
标识
DOI:10.1148/radiol.2017170706
摘要

Purpose To investigate diagnostic performance by using a deep learning method with a convolutional neural network (CNN) for the differentiation of liver masses at dynamic contrast agent–enhanced computed tomography (CT). Materials and Methods This clinical retrospective study used CT image sets of liver masses over three phases (noncontrast-agent enhanced, arterial, and delayed). Masses were diagnosed according to five categories (category A, classic hepatocellular carcinomas [HCCs]; category B, malignant liver tumors other than classic and early HCCs; category C, indeterminate masses or mass-like lesions [including early HCCs and dysplastic nodules] and rare benign liver masses other than hemangiomas and cysts; category D, hemangiomas; and category E, cysts). Supervised training was performed by using 55 536 image sets obtained in 2013 (from 460 patients, 1068 sets were obtained and they were augmented by a factor of 52 [rotated, parallel-shifted, strongly enlarged, and noise-added images were generated from the original images]). The CNN was composed of six convolutional, three maximum pooling, and three fully connected layers. The CNN was tested with 100 liver mass image sets obtained in 2016 (74 men and 26 women; mean age, 66.4 years ± 10.6 [standard deviation]; mean mass size, 26.9 mm ± 25.9; 21, nine, 35, 20, and 15 liver masses for categories A, B, C, D, and E, respectively). Training and testing were performed five times. Accuracy for categorizing liver masses with CNN model and the area under receiver operating characteristic curve for differentiating categories A–B versus categories C–E were calculated. Results Median accuracy of differential diagnosis of liver masses for test data were 0.84. Median area under the receiver operating characteristic curve for differentiating categories A–B from C–E was 0.92. Conclusion Deep learning with CNN showed high diagnostic performance in differentiation of liver masses at dynamic CT. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
柒柒发布了新的文献求助10
3秒前
3秒前
手机应助白鸽鸽采纳,获得10
4秒前
6秒前
小牛完成签到,获得积分20
6秒前
sukii发布了新的文献求助30
7秒前
8秒前
黑白灰完成签到,获得积分20
8秒前
毫米发布了新的文献求助10
8秒前
8秒前
科研狗发布了新的文献求助10
8秒前
包容雨莲发布了新的文献求助10
9秒前
sxc完成签到,获得积分10
9秒前
9秒前
迷路的翠容应助噜啦啦采纳,获得10
11秒前
11秒前
罗同学发布了新的文献求助10
12秒前
mmmmmmgm完成签到,获得积分10
12秒前
NameCYQ完成签到,获得积分10
19秒前
毫米完成签到,获得积分20
20秒前
22秒前
结实的以莲完成签到,获得积分10
23秒前
26秒前
WSGQT完成签到 ,获得积分10
26秒前
流星发布了新的文献求助10
27秒前
溪水完成签到,获得积分10
30秒前
30秒前
深情安青应助odzyhing采纳,获得10
31秒前
852应助Evan123采纳,获得10
32秒前
yifanchen应助包容雨莲采纳,获得10
33秒前
柏小霜完成签到 ,获得积分10
33秒前
33秒前
34秒前
34秒前
34秒前
34秒前
37秒前
子车茗应助动听千风采纳,获得30
38秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329501
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594396
捐赠科研通 2637597
什么是DOI,文献DOI怎么找? 1443667
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656220