Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study

医学 卷积神经网络 放射科 深度学习 动态对比度 人工智能 对比度(视觉) 磁共振成像 计算机科学
作者
Koichiro Yasaka,Hiroyuki Akai,Osamu Abe,Shigeru Kiryu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:286 (3): 887-896 被引量:576
标识
DOI:10.1148/radiol.2017170706
摘要

Purpose To investigate diagnostic performance by using a deep learning method with a convolutional neural network (CNN) for the differentiation of liver masses at dynamic contrast agent-enhanced computed tomography (CT). Materials and Methods This clinical retrospective study used CT image sets of liver masses over three phases (noncontrast-agent enhanced, arterial, and delayed). Masses were diagnosed according to five categories (category A, classic hepatocellular carcinomas [HCCs]; category B, malignant liver tumors other than classic and early HCCs; category C, indeterminate masses or mass-like lesions [including early HCCs and dysplastic nodules] and rare benign liver masses other than hemangiomas and cysts; category D, hemangiomas; and category E, cysts). Supervised training was performed by using 55 536 image sets obtained in 2013 (from 460 patients, 1068 sets were obtained and they were augmented by a factor of 52 [rotated, parallel-shifted, strongly enlarged, and noise-added images were generated from the original images]). The CNN was composed of six convolutional, three maximum pooling, and three fully connected layers. The CNN was tested with 100 liver mass image sets obtained in 2016 (74 men and 26 women; mean age, 66.4 years ± 10.6 [standard deviation]; mean mass size, 26.9 mm ± 25.9; 21, nine, 35, 20, and 15 liver masses for categories A, B, C, D, and E, respectively). Training and testing were performed five times. Accuracy for categorizing liver masses with CNN model and the area under receiver operating characteristic curve for differentiating categories A-B versus categories C-E were calculated. Results Median accuracy of differential diagnosis of liver masses for test data were 0.84. Median area under the receiver operating characteristic curve for differentiating categories A-B from C-E was 0.92. Conclusion Deep learning with CNN showed high diagnostic performance in differentiation of liver masses at dynamic CT. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助小h采纳,获得10
1秒前
1秒前
冷傲博完成签到,获得积分10
1秒前
prisfanstein完成签到,获得积分10
2秒前
华仔应助一只龟龟采纳,获得10
2秒前
2秒前
脑洞疼应助一碘碘Q采纳,获得10
2秒前
小刚发布了新的文献求助10
3秒前
and999完成签到,获得积分10
3秒前
3秒前
上帝粒子完成签到,获得积分10
5秒前
kai完成签到,获得积分10
5秒前
5秒前
丘比特应助Lmding采纳,获得10
6秒前
巴黎的防完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
畜牧笑笑完成签到,获得积分10
7秒前
7秒前
cgjj完成签到,获得积分20
8秒前
Kevin完成签到,获得积分10
9秒前
9秒前
小二郎应助山水之乐采纳,获得10
9秒前
10秒前
WSQ完成签到,获得积分20
10秒前
12秒前
12秒前
12秒前
LI完成签到,获得积分10
13秒前
韩邹光完成签到,获得积分10
13秒前
kagami应助害羞洙采纳,获得30
13秒前
搜集达人应助木木木木采纳,获得10
14秒前
我是老大应助景灵松采纳,获得10
14秒前
童话发布了新的文献求助10
14秒前
慕青应助xiatl采纳,获得10
14秒前
14秒前
ilooksjw发布了新的文献求助10
14秒前
小兰完成签到,获得积分10
14秒前
阿珊完成签到,获得积分10
15秒前
15秒前
积极的汽车完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009429
求助须知:如何正确求助?哪些是违规求助? 3549323
关于积分的说明 11301690
捐赠科研通 3283833
什么是DOI,文献DOI怎么找? 1810413
邀请新用户注册赠送积分活动 886275
科研通“疑难数据库(出版商)”最低求助积分说明 811301