亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study

医学 卷积神经网络 放射科 深度学习 动态对比度 人工智能 对比度(视觉) 磁共振成像 计算机科学
作者
Koichiro Yasaka,Hiroyuki Akai,Osamu Abe,Shigeru Kiryu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:286 (3): 887-896 被引量:576
标识
DOI:10.1148/radiol.2017170706
摘要

Purpose To investigate diagnostic performance by using a deep learning method with a convolutional neural network (CNN) for the differentiation of liver masses at dynamic contrast agent-enhanced computed tomography (CT). Materials and Methods This clinical retrospective study used CT image sets of liver masses over three phases (noncontrast-agent enhanced, arterial, and delayed). Masses were diagnosed according to five categories (category A, classic hepatocellular carcinomas [HCCs]; category B, malignant liver tumors other than classic and early HCCs; category C, indeterminate masses or mass-like lesions [including early HCCs and dysplastic nodules] and rare benign liver masses other than hemangiomas and cysts; category D, hemangiomas; and category E, cysts). Supervised training was performed by using 55 536 image sets obtained in 2013 (from 460 patients, 1068 sets were obtained and they were augmented by a factor of 52 [rotated, parallel-shifted, strongly enlarged, and noise-added images were generated from the original images]). The CNN was composed of six convolutional, three maximum pooling, and three fully connected layers. The CNN was tested with 100 liver mass image sets obtained in 2016 (74 men and 26 women; mean age, 66.4 years ± 10.6 [standard deviation]; mean mass size, 26.9 mm ± 25.9; 21, nine, 35, 20, and 15 liver masses for categories A, B, C, D, and E, respectively). Training and testing were performed five times. Accuracy for categorizing liver masses with CNN model and the area under receiver operating characteristic curve for differentiating categories A-B versus categories C-E were calculated. Results Median accuracy of differential diagnosis of liver masses for test data were 0.84. Median area under the receiver operating characteristic curve for differentiating categories A-B from C-E was 0.92. Conclusion Deep learning with CNN showed high diagnostic performance in differentiation of liver masses at dynamic CT. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助xjz采纳,获得10
2秒前
一休发布了新的文献求助10
3秒前
所所应助科研通管家采纳,获得10
5秒前
5秒前
罗伊黄完成签到,获得积分10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
5秒前
能干的人完成签到,获得积分10
6秒前
小黑完成签到,获得积分10
7秒前
zyq完成签到,获得积分10
10秒前
Jasper应助一休采纳,获得10
12秒前
13秒前
zyq发布了新的文献求助10
16秒前
Emma发布了新的文献求助10
17秒前
友好小土豆完成签到 ,获得积分10
21秒前
23秒前
24秒前
24秒前
28秒前
xjz发布了新的文献求助10
29秒前
明天更好完成签到 ,获得积分10
29秒前
30秒前
呋喃发布了新的文献求助10
30秒前
李健应助Emma采纳,获得10
30秒前
32秒前
32秒前
sansan完成签到 ,获得积分10
36秒前
大模型应助郝优佳采纳,获得10
39秒前
斯文败类应助呋喃采纳,获得100
44秒前
51秒前
53秒前
hxr完成签到 ,获得积分10
53秒前
小蘑菇应助Dec采纳,获得10
54秒前
江南之南完成签到 ,获得积分10
55秒前
oleskarabach发布了新的文献求助10
55秒前
ZJ完成签到,获得积分10
56秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407675
求助须知:如何正确求助?哪些是违规求助? 4525191
关于积分的说明 14101408
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436558
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604