Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study

医学 卷积神经网络 放射科 深度学习 动态对比度 人工智能 对比度(视觉) 磁共振成像 计算机科学
作者
Koichiro Yasaka,Hiroyuki Akai,Osamu Abe,Shigeru Kiryu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:286 (3): 887-896 被引量:576
标识
DOI:10.1148/radiol.2017170706
摘要

Purpose To investigate diagnostic performance by using a deep learning method with a convolutional neural network (CNN) for the differentiation of liver masses at dynamic contrast agent-enhanced computed tomography (CT). Materials and Methods This clinical retrospective study used CT image sets of liver masses over three phases (noncontrast-agent enhanced, arterial, and delayed). Masses were diagnosed according to five categories (category A, classic hepatocellular carcinomas [HCCs]; category B, malignant liver tumors other than classic and early HCCs; category C, indeterminate masses or mass-like lesions [including early HCCs and dysplastic nodules] and rare benign liver masses other than hemangiomas and cysts; category D, hemangiomas; and category E, cysts). Supervised training was performed by using 55 536 image sets obtained in 2013 (from 460 patients, 1068 sets were obtained and they were augmented by a factor of 52 [rotated, parallel-shifted, strongly enlarged, and noise-added images were generated from the original images]). The CNN was composed of six convolutional, three maximum pooling, and three fully connected layers. The CNN was tested with 100 liver mass image sets obtained in 2016 (74 men and 26 women; mean age, 66.4 years ± 10.6 [standard deviation]; mean mass size, 26.9 mm ± 25.9; 21, nine, 35, 20, and 15 liver masses for categories A, B, C, D, and E, respectively). Training and testing were performed five times. Accuracy for categorizing liver masses with CNN model and the area under receiver operating characteristic curve for differentiating categories A-B versus categories C-E were calculated. Results Median accuracy of differential diagnosis of liver masses for test data were 0.84. Median area under the receiver operating characteristic curve for differentiating categories A-B from C-E was 0.92. Conclusion Deep learning with CNN showed high diagnostic performance in differentiation of liver masses at dynamic CT. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一扁渔发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
李志诚发布了新的文献求助10
2秒前
脑洞疼应助Heart采纳,获得10
3秒前
哈哈哈哈完成签到 ,获得积分10
4秒前
4秒前
pikelet完成签到,获得积分10
5秒前
5秒前
李莹发布了新的文献求助10
5秒前
鲸鱼关注了科研通微信公众号
6秒前
7秒前
tom发布了新的文献求助10
7秒前
RUC_Zhao完成签到,获得积分10
7秒前
Cell完成签到 ,获得积分10
7秒前
7秒前
犹豫晓啸完成签到,获得积分10
8秒前
9秒前
tx发布了新的文献求助10
9秒前
科研通AI6应助李志诚采纳,获得10
9秒前
李欣如发布了新的文献求助10
10秒前
12秒前
13秒前
玫瑰羊发布了新的文献求助10
13秒前
无花果应助糊涂的青梦采纳,获得10
15秒前
Able完成签到,获得积分10
16秒前
浮游应助细腻戒指采纳,获得10
17秒前
Liywww完成签到 ,获得积分10
17秒前
小圆不头大完成签到,获得积分10
17秒前
18秒前
英俊的铭应助向自由采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
世外完成签到,获得积分10
20秒前
雷桑发布了新的文献求助10
21秒前
脑洞疼应助DARKBLUE采纳,获得10
21秒前
小丸子发布了新的文献求助10
22秒前
wanci应助露似珍珠月似弓采纳,获得10
24秒前
大模型应助北欧森林采纳,获得30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4932893
求助须知:如何正确求助?哪些是违规求助? 4201250
关于积分的说明 13052195
捐赠科研通 3975208
什么是DOI,文献DOI怎么找? 2178226
邀请新用户注册赠送积分活动 1194659
关于科研通互助平台的介绍 1105922