Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study

医学 卷积神经网络 放射科 深度学习 动态对比度 人工智能 对比度(视觉) 磁共振成像 计算机科学
作者
Koichiro Yasaka,Hiroyuki Akai,Osamu Abe,Shigeru Kiryu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:286 (3): 887-896 被引量:629
标识
DOI:10.1148/radiol.2017170706
摘要

Purpose To investigate diagnostic performance by using a deep learning method with a convolutional neural network (CNN) for the differentiation of liver masses at dynamic contrast agent-enhanced computed tomography (CT). Materials and Methods This clinical retrospective study used CT image sets of liver masses over three phases (noncontrast-agent enhanced, arterial, and delayed). Masses were diagnosed according to five categories (category A, classic hepatocellular carcinomas [HCCs]; category B, malignant liver tumors other than classic and early HCCs; category C, indeterminate masses or mass-like lesions [including early HCCs and dysplastic nodules] and rare benign liver masses other than hemangiomas and cysts; category D, hemangiomas; and category E, cysts). Supervised training was performed by using 55 536 image sets obtained in 2013 (from 460 patients, 1068 sets were obtained and they were augmented by a factor of 52 [rotated, parallel-shifted, strongly enlarged, and noise-added images were generated from the original images]). The CNN was composed of six convolutional, three maximum pooling, and three fully connected layers. The CNN was tested with 100 liver mass image sets obtained in 2016 (74 men and 26 women; mean age, 66.4 years ± 10.6 [standard deviation]; mean mass size, 26.9 mm ± 25.9; 21, nine, 35, 20, and 15 liver masses for categories A, B, C, D, and E, respectively). Training and testing were performed five times. Accuracy for categorizing liver masses with CNN model and the area under receiver operating characteristic curve for differentiating categories A-B versus categories C-E were calculated. Results Median accuracy of differential diagnosis of liver masses for test data were 0.84. Median area under the receiver operating characteristic curve for differentiating categories A-B from C-E was 0.92. Conclusion Deep learning with CNN showed high diagnostic performance in differentiation of liver masses at dynamic CT. © RSNA, 2017 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助等待凝海采纳,获得10
刚刚
尉迟希望应助小欣6116采纳,获得10
1秒前
1秒前
qi关注了科研通微信公众号
2秒前
2秒前
3秒前
e任思发布了新的文献求助10
3秒前
常艳艳发布了新的文献求助10
3秒前
小祥哥发布了新的文献求助10
4秒前
赵文悦完成签到,获得积分10
4秒前
此时此刻发布了新的文献求助10
5秒前
无花果应助yx采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
可爱的函函应助kik采纳,获得10
5秒前
bioglia完成签到,获得积分10
5秒前
6秒前
木头发布了新的文献求助200
6秒前
科研大熊猫完成签到,获得积分10
6秒前
6秒前
6秒前
yellow完成签到,获得积分10
6秒前
7秒前
超人Steiner发布了新的文献求助10
7秒前
科研通AI2S应助qqxt采纳,获得30
7秒前
Rollei应助大气藏鸟采纳,获得10
7秒前
司徒松思发布了新的文献求助10
8秒前
华仔应助Elcric采纳,获得10
8秒前
大模型应助ICeU采纳,获得10
8秒前
量子星尘发布了新的文献求助30
8秒前
KKKZ完成签到,获得积分10
9秒前
Owen应助文艺的访曼采纳,获得10
9秒前
makimaki发布了新的文献求助10
9秒前
斯文败类应助999采纳,获得10
10秒前
虚拟的清炎完成签到 ,获得积分10
10秒前
10秒前
10秒前
深情安青应助lian采纳,获得10
10秒前
11秒前
JJ完成签到,获得积分10
11秒前
科研大熊猫关注了科研通微信公众号
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718409
求助须知:如何正确求助?哪些是违规求助? 5252448
关于积分的说明 15285701
捐赠科研通 4868645
什么是DOI,文献DOI怎么找? 2614320
邀请新用户注册赠送积分活动 1564168
关于科研通互助平台的介绍 1521611