Machine Learning for Survival Analysis: A Survey

审查(临床试验) 不可见的 计算机科学 机器学习 事件(粒子物理) 背景(考古学) 人工智能 数据科学 生存分析 计量经济学 统计 数学 量子力学 生物 物理 古生物学
作者
Ping Wang,Yan Li,Chandan K. Reddy
出处
期刊:Cornell University - arXiv 被引量:102
标识
DOI:10.48550/arxiv.1708.04649
摘要

Accurately predicting the time of occurrence of an event of interest is a critical problem in longitudinal data analysis. One of the main challenges in this context is the presence of instances whose event outcomes become unobservable after a certain time point or when some instances do not experience any event during the monitoring period. Such a phenomenon is called censoring which can be effectively handled using survival analysis techniques. Traditionally, statistical approaches have been widely developed in the literature to overcome this censoring issue. In addition, many machine learning algorithms are adapted to effectively handle survival data and tackle other challenging problems that arise in real-world data. In this survey, we provide a comprehensive and structured review of the representative statistical methods along with the machine learning techniques used in survival analysis and provide a detailed taxonomy of the existing methods. We also discuss several topics that are closely related to survival analysis and illustrate several successful applications in various real-world application domains. We hope that this paper will provide a more thorough understanding of the recent advances in survival analysis and offer some guidelines on applying these approaches to solve new problems that arise in applications with censored data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗亦绿完成签到,获得积分10
1秒前
ziyiziyi完成签到,获得积分10
1秒前
2秒前
ziyiziyi发布了新的文献求助10
3秒前
彭于晏应助科研通管家采纳,获得10
5秒前
无花果应助酸菜鱼火锅采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得30
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
芝麻糊应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
坚强亦丝应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
Akim应助语文老师采纳,获得30
6秒前
wdw2501完成签到,获得积分10
6秒前
7秒前
妲己在此发布了新的文献求助10
9秒前
完美世界应助hihi采纳,获得10
9秒前
9秒前
10秒前
xiaohanzai88完成签到,获得积分10
11秒前
小二郎应助丁的采纳,获得10
13秒前
丘比特应助july7292采纳,获得10
15秒前
17秒前
vhdadw完成签到,获得积分10
17秒前
20秒前
MingandMin完成签到,获得积分10
20秒前
正直画笔完成签到 ,获得积分10
22秒前
Rabbit完成签到 ,获得积分10
22秒前
纯真毛豆发布了新的文献求助10
22秒前
语文老师发布了新的文献求助30
23秒前
Sandwich完成签到,获得积分20
24秒前
25秒前
26秒前
sally_5202完成签到 ,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461286
求助须知:如何正确求助?哪些是违规求助? 3054997
关于积分的说明 9046106
捐赠科研通 2744930
什么是DOI,文献DOI怎么找? 1505743
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264