聚ADP核糖聚合酶
分子生物学
染色质免疫沉淀
纤维化
SMAD公司
PARP抑制剂
生物
癌症研究
转化生长因子
细胞生物学
医学
聚合酶
基因表达
发起人
病理
DNA
生物化学
基因
作者
Yun Zhang,Sebastian Pötter,Chih‐Wei Chen,Ruiying Liang,Kolja Gelse,Ingo Ludolph,Raymund E. Horch,Oliver Distler,Georg Schett,Jörg H. W. Distler,Clara Dees
标识
DOI:10.1136/annrheumdis-2017-212265
摘要
Objectives The enzyme poly(ADP-ribose) polymerase-1 (PARP-1) transfers negatively charged ADP-ribose units to target proteins. This modification can have pronounced regulatory effects on target proteins. Recent studies showed that PARP-1 can poly(ADP-ribosyl)ate (PARylate) Smad proteins. However, the role of PARP-1 in the pathogenesis of systemic sclerosis (SSc) has not been investigated. Methods The expression of PARP-1 was determined by quantitative PCR and immunohistochemistry. DNA methylation was analysed by methylated DNA immunoprecipitation assays. Transforming growth factor-β (TGFβ) signalling was assessed using reporter assays, chromatin immunoprecipitation assays and target gene analysis. The effect of PARP-1 inactivation was investigated in bleomycin-induced and topoisomerase-induced fibrosis as well as in tight-skin-1 (Tsk-1) mice. Results The expression of PARP-1 was decreased in patients with SSc, particularly in fibroblasts. The promoter of PARP-1 was hypermethylated in SSc fibroblasts and in TGFβ-stimulated normal fibroblasts. Inhibition of DNA methyltransferases (DNMTs) reduced the promoter methylation and reactivated the expression of PARP-1. Inactivation of PARP-1 promoted accumulation of phosphorylated Smad3, enhanced Smad-dependent transcription and upregulated the expression of TGFβ/Smad target genes. Inhibition of PARP-1 enhanced the effect of TGFβ on collagen release and myofibroblast differentiation in vitro and exacerbated experimental fibrosis in vivo. PARP-1 deficiency induced a more severe fibrotic response to bleomycin with increased dermal thickening, hydroxyproline content and myofibroblast counts. Inhibition of PARylation also exacerbated fibrosis in Tsk-1 mice and in mice with topoisomerase-induced fibrosis. Conclusion PARP-1 negatively regulates canonical TGFβ signalling in experimental skin fibrosis. The downregulation of PARP-1 in SSc fibroblasts may thus directly contribute to hyperactive TGFβ signalling and to persistent fibroblast activation in SSc.
科研通智能强力驱动
Strongly Powered by AbleSci AI