材料科学
微观结构
极限抗拉强度
合金
打滑(空气动力学)
挤压
拉伸试验
数字图像相关
复合材料
变形(气象学)
冶金
延展性(地球科学)
变形机理
蠕动
物理
热力学
作者
Chao Xu,Guohua Fan,T. Nakata,Liang Xue,Y. Q.,Xiaoguang Qiao,Giacomo Cao,T. T. Zhang,M. Huang,Kesong Miao,M.Y. Zheng,Shigeharu Kamado,Honglan Xie
标识
DOI:10.1007/s11661-018-4507-5
摘要
An ultra-strong and ductile Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt pct) alloy was developed by using hot extrusion to modify the microstructure via forced-air cooling and an artificial aging treatment. A superior strength–ductility balance was obtained that had a tensile yield strength of 466 MPa and an elongation to failure of 14.5 pct. The local strain evolution during the in situ testing of the ultra-strong and ductile alloy was quantitatively analyzed with high-resolution electron backscattered diffraction and digital image correlation. The fracture behavior during the tensile test was characterized by synchrotron X-ray tomography along with SEM and STEM observations. The alloy showed a bimodal microstructure, consisting of dynamically recrystallized (DRXed) grains with random orientations and elongated hot-worked grains with $$ \left\langle { 10{\bar{\text{1}}}0} \right\rangle $$
parallel to the extrusion direction. The DRXed grains were deformed by the basal 〈a〉 slip and the hot-worked grains were deformed by the prismatic 〈a〉 slip dominantly. The strain evolution analysis indicated that the multilayered structure relaxed the strain localization via strain transfer from the DRXed to the hot-worked regions, which led to the high ductility of the alloy. Precipitation of the γ′ on basal planes and the β′ phases on the prismatic planes of the α-Mg generated closed volumes, which enhanced the strength by pinning dislocations effectively, and contributed to the high ductility by impeding the propagation of micro-cracks inside the grains. The deformation incompatibility between the hot-worked grains and the arched block-shaped long-period stacking ordered (LPSO) phases induced the crack initiation and propagation, which fractured the alloy.
科研通智能强力驱动
Strongly Powered by AbleSci AI