Pruning representations in a distributed model of working memory: a mechanism for refreshing and removal?

修剪 计算机科学 召回 工作记忆 机制(生物学) 认知心理学 无损压缩 人工智能 机器学习 心理学 认知 神经科学 生物 数据压缩 认识论 哲学 农学
作者
Peter Shepherdson,Klaus Oberauer
出处
期刊:Annals of the New York Academy of Sciences [Wiley]
卷期号:1424 (1): 221-238 被引量:3
标识
DOI:10.1111/nyas.13659
摘要

Substantial behavioral evidence suggests that attention plays an important role in working memory. Frequently, attention is characterized as enhancing representations by increasing their strength or activation level. Despite the intuitive appeal of this idea, using attention to strengthen representations in computational models can lead to unexpected outcomes. Representational strengthening frequently leads to worse, rather than better, performance, contradicting behavioral results. Here, we propose an alternative to a pure strengthening account, in which attention is used to selectively strengthen useful and weaken less useful components of distributed memory representations, thereby pruning the representations. We use a simple sampling algorithm to implement this pruning mechanism in a computational model of working memory. Our simulations show that pruning representations in this manner leads to improvements in performance compared with a lossless (i.e., decay-free) baseline condition, for both discrete recall (e.g., of a list of words) and continuous reproduction (e.g., of an array of colors). Pruning also offers a potential explanation of why a retro-cue drawing attention to one memory item during the retention interval improves performance. These results indicate that a pruning mechanism could provide a viable alternative to pure strengthening accounts of attention to representations in working memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
占臻发布了新的文献求助10
刚刚
1秒前
2秒前
Akim应助mingzhu采纳,获得10
2秒前
啊凡完成签到,获得积分10
3秒前
4秒前
搞怪烨伟发布了新的文献求助10
4秒前
科研通AI2S应助孙某人采纳,获得10
5秒前
bkagyin应助薰衣草采纳,获得10
5秒前
6秒前
史道夫完成签到,获得积分10
8秒前
YY完成签到,获得积分10
9秒前
10秒前
right完成签到,获得积分10
10秒前
11秒前
11秒前
科研通AI2S应助白敬亭采纳,获得10
11秒前
12秒前
xiaobai发布了新的文献求助10
13秒前
lzy完成签到 ,获得积分10
14秒前
科研通AI2S应助斐然诗采纳,获得10
14秒前
A欣完成签到,获得积分10
15秒前
SGQT发布了新的文献求助10
17秒前
薰衣草发布了新的文献求助10
17秒前
18秒前
YY完成签到 ,获得积分10
18秒前
炒饭完成签到,获得积分10
18秒前
leo完成签到 ,获得积分10
20秒前
yyy发布了新的文献求助10
21秒前
占臻完成签到,获得积分10
21秒前
丘比特应助jbear采纳,获得10
21秒前
Lucas应助luanshi采纳,获得10
22秒前
吐司匹林发布了新的文献求助10
22秒前
22秒前
23秒前
25秒前
别绪叁仟完成签到 ,获得积分10
26秒前
29秒前
DD发布了新的文献求助10
30秒前
顾矜应助SGQT采纳,获得10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046