Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder

雷诺数 物理 圆柱 唤醒 卷积神经网络 计算流体力学 机械 雷诺应力 算法 几何学 湍流 人工智能 计算机科学 数学
作者
Xiaowei Jin,Peng Cheng,Wen‐Li Chen,Hui Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:30 (4) 被引量:270
标识
DOI:10.1063/1.5024595
摘要

A data-driven model is proposed for the prediction of the velocity field around a cylinder by fusion convolutional neural networks (CNNs) using measurements of the pressure field on the cylinder. The model is based on the close relationship between the Reynolds stresses in the wake, the wake formation length, and the base pressure. Numerical simulations of flow around a cylinder at various Reynolds numbers are carried out to establish a dataset capturing the effect of the Reynolds number on various flow properties. The time series of pressure fluctuations on the cylinder is converted into a grid-like spatial-temporal topology to be handled as the input of a CNN. A CNN architecture composed of a fusion of paths with and without a pooling layer is designed. This architecture can capture both accurate spatial-temporal information and the features that are invariant of small translations in the temporal dimension of pressure fluctuations on the cylinder. The CNN is trained using the computational fluid dynamics (CFD) dataset to establish the mapping relationship between the pressure fluctuations on the cylinder and the velocity field around the cylinder. Adam (adaptive moment estimation), an efficient method for processing large-scale and high-dimensional machine learning problems, is employed to implement the optimization algorithm. The trained model is then tested over various Reynolds numbers. The predictions of this model are found to agree well with the CFD results, and the data-driven model successfully learns the underlying flow regimes, i.e., the relationship between wake structure and pressure experienced on the surface of a cylinder is well established.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zw发布了新的文献求助10
2秒前
魔幻巧荷完成签到,获得积分10
2秒前
2秒前
of完成签到 ,获得积分10
3秒前
3秒前
帅玉玉完成签到,获得积分10
3秒前
huoguo完成签到,获得积分10
3秒前
Fang发布了新的文献求助10
4秒前
科研通AI2S应助顾长生采纳,获得10
4秒前
Clivia发布了新的文献求助10
5秒前
6秒前
Lucas应助费代姚采纳,获得10
7秒前
7秒前
脑洞疼应助Coconut采纳,获得10
7秒前
9秒前
wmwjl完成签到,获得积分10
9秒前
晚意意意意意完成签到 ,获得积分10
10秒前
10秒前
英俊的铭应助无奈的老姆采纳,获得10
10秒前
scfy完成签到,获得积分20
11秒前
orixero应助鬼才之眼采纳,获得10
11秒前
12秒前
蔡蔡蔡发布了新的文献求助10
13秒前
顾长生发布了新的文献求助10
15秒前
zhangbh1990完成签到 ,获得积分10
15秒前
明理映真完成签到,获得积分10
17秒前
17秒前
诚心的寻凝完成签到,获得积分20
19秒前
研友_VZG7GZ应助lili-采纳,获得10
20秒前
20秒前
谷谷完成签到,获得积分10
21秒前
22秒前
23秒前
zstyry9998完成签到,获得积分10
25秒前
starr发布了新的文献求助10
27秒前
wf发布了新的文献求助10
27秒前
27秒前
M1982发布了新的文献求助30
28秒前
李健的小迷弟应助顾长生采纳,获得10
28秒前
高分求助中
Востребованный временем 2500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Principles of Ultraviolet Photoelectron Spectroscopy 500
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3429039
求助须知:如何正确求助?哪些是违规求助? 3027821
关于积分的说明 8925984
捐赠科研通 2715485
什么是DOI,文献DOI怎么找? 1489422
科研通“疑难数据库(出版商)”最低求助积分说明 688425
邀请新用户注册赠送积分活动 684279