诱导多能干细胞
神经嵴
胚胎干细胞
干细胞
生物
细胞生物学
P19电池
胚芽层
细胞分化
胚胎
遗传学
基因
作者
Faith R. Kreitzer,Nathan Salomonis,Annalisa Sheehan,Miller Huang,Jason S Park,Matthew Spindler,Paweena Lizarraga,William A. Weiss,Po-Lin So,Bruce R. Conklin
出处
期刊:PubMed
日期:2013-01-01
卷期号:2 (2): 119-31
被引量:83
摘要
Neural crest (NC) cells contribute to the development of many complex tissues of all three germ layers during embryogenesis, and its abnormal development accounts for several congenital birth defects. Generating NC cells-including specific subpopulations such as cranial, cardiac, and trunk NC cells-from human pluripotent stem cells will provide a valuable model system to study human development and disease. Here, we describe a rapid and robust NC differentiation method called "LSB-short" that is based on dual SMAD pathway inhibition. This protocol yields high percentages of NC cell populations from multiple human induced pluripotent stem and human embryonic stem cell lines in 8 days. The resulting cells can be propagated easily, retain NC marker expression over multiple passages, and can spontaneously differentiate into several NC-derived cell lineages, including smooth muscle cells, peripheral neurons, and Schwann cells. NC cells generated by this method represent cranial, cardiac and trunk NC subpopulations based on global gene expression analyses, are similar to in vivo analogues, and express a common set of NC alternative isoforms. Functionally, they are also able to migrate appropriately in response to chemoattractants such as SDF-1, FGF8b, and Wnt3a. By yielding NC cells that likely represent all NC subpopulations in a shorter time frame than other published methods, our LSB-short method provides an ideal model system for further studies of human NC development and disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI