Metabolic network capacity of Escherichia coli for Krebs cycle-dependent proline hydroxylation

大肠杆菌 羟基化 生物化学 脯氨酸 化学 代谢途径 生物 微生物学 新陈代谢 氨基酸 基因
作者
Eleni Theodosiou,Oliver Frick,Bruno Bühler,Andreas Schmid
出处
期刊:Microbial Cell Factories [Springer Nature]
卷期号:14 (1) 被引量:27
标识
DOI:10.1186/s12934-015-0298-1
摘要

Understanding the metabolism of the microbial host is essential for the development and optimization of whole-cell based biocatalytic processes, as it dictates production efficiency. This is especially true for redox biocatalysis where metabolically active cells are employed because of the cofactor/cosubstrate regenerative capacity endogenous in the host. Recombinant Escherichia coli was used for overproducing proline-4-hydroxylase (P4H), a dioxygenase catalyzing the hydroxylation of free l-proline into trans-4-hydroxy-l-proline with a-ketoglutarate (a-KG) as cosubstrate. In this whole-cell biocatalyst, central carbon metabolism provides the required cosubstrate a-KG, coupling P4H biocatalytic performance directly to carbon metabolism and metabolic activity. By applying both experimental and computational biology tools, such as metabolic engineering and 13C-metabolic flux analysis (13C-MFA), we investigated and quantitatively described the physiological, metabolic, and bioenergetic response of the whole-cell biocatalyst to the targeted bioconversion and identified possible metabolic bottlenecks for further rational pathway engineering. A proline degradation-deficient E. coli strain was constructed by deleting the putA gene encoding proline dehydrogenase. Whole-cell biotransformations with this mutant strain led not only to quantitative proline hydroxylation but also to a doubling of the specific trans-4-l-hydroxyproline (hyp) formation rate, compared to the wild type. Analysis of carbon flux through central metabolism of the mutant strain revealed that the increased a-KG demand for P4H activity did not enhance the a-KG generating flux, indicating a tightly regulated TCA cycle operation under the conditions studied. In the wild type strain, P4H synthesis and catalysis caused a reduction in biomass yield. Interestingly, the ΔputA strain additionally compensated the associated ATP and NADH loss by reducing maintenance energy demands at comparably low glucose uptake rates, instead of increasing the TCA activity. The putA knockout in recombinant E. coli BL21(DE3)(pLysS) was found to be promising for productive P4H catalysis not only in terms of biotransformation yield, but also regarding the rates for biotransformation and proline uptake and the yield of hyp on the energy source. The results indicate that, upon a putA knockout, the coupling of the TCA-cycle to proline hydroxylation via the cosubstrate a-KG becomes a key factor constraining and a target to further improve the efficiency of a-KG-dependent biotransformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助Letter采纳,获得10
刚刚
FashionBoy应助云为晓采纳,获得10
刚刚
刚刚
小李子完成签到 ,获得积分10
1秒前
周末万岁发布了新的文献求助10
1秒前
尕辉发布了新的文献求助10
2秒前
赘婿应助二号采纳,获得10
2秒前
1111发布了新的文献求助30
2秒前
思源应助Ni采纳,获得10
2秒前
英吉利25发布了新的文献求助10
2秒前
3秒前
3秒前
田様应助一念初见采纳,获得10
3秒前
科研通AI6应助kskdss采纳,获得150
3秒前
油焖青椒发布了新的文献求助10
4秒前
京阿尼发布了新的文献求助10
4秒前
夜雨完成签到 ,获得积分10
4秒前
4秒前
xxmm发布了新的文献求助10
5秒前
浮游应助huiliyi采纳,获得10
5秒前
5秒前
笨笨翰发布了新的文献求助10
6秒前
YK完成签到,获得积分10
6秒前
j7完成签到 ,获得积分10
6秒前
polaris完成签到,获得积分10
7秒前
7秒前
0000发布了新的文献求助10
7秒前
鲜艳的盼芙完成签到,获得积分20
7秒前
7秒前
田様应助nnnd77采纳,获得10
7秒前
Yolanda完成签到,获得积分20
7秒前
antonin发布了新的文献求助10
7秒前
拼搏的听寒完成签到,获得积分10
7秒前
rachel03发布了新的文献求助10
8秒前
abc完成签到,获得积分10
8秒前
8秒前
8秒前
编号9527发布了新的文献求助10
9秒前
科研通AI6应助Shiyuan采纳,获得10
9秒前
孙美娜完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435258
求助须知:如何正确求助?哪些是违规求助? 4547383
关于积分的说明 14207992
捐赠科研通 4467551
什么是DOI,文献DOI怎么找? 2448594
邀请新用户注册赠送积分活动 1439513
关于科研通互助平台的介绍 1416193