Metabolic network capacity of Escherichia coli for Krebs cycle-dependent proline hydroxylation

大肠杆菌 羟基化 生物化学 脯氨酸 化学 代谢途径 生物 微生物学 新陈代谢 氨基酸 基因
作者
Eleni Theodosiou,Oliver Frick,Bruno Bühler,Andreas Schmid
出处
期刊:Microbial Cell Factories [Springer Nature]
卷期号:14 (1) 被引量:27
标识
DOI:10.1186/s12934-015-0298-1
摘要

Understanding the metabolism of the microbial host is essential for the development and optimization of whole-cell based biocatalytic processes, as it dictates production efficiency. This is especially true for redox biocatalysis where metabolically active cells are employed because of the cofactor/cosubstrate regenerative capacity endogenous in the host. Recombinant Escherichia coli was used for overproducing proline-4-hydroxylase (P4H), a dioxygenase catalyzing the hydroxylation of free l-proline into trans-4-hydroxy-l-proline with a-ketoglutarate (a-KG) as cosubstrate. In this whole-cell biocatalyst, central carbon metabolism provides the required cosubstrate a-KG, coupling P4H biocatalytic performance directly to carbon metabolism and metabolic activity. By applying both experimental and computational biology tools, such as metabolic engineering and 13C-metabolic flux analysis (13C-MFA), we investigated and quantitatively described the physiological, metabolic, and bioenergetic response of the whole-cell biocatalyst to the targeted bioconversion and identified possible metabolic bottlenecks for further rational pathway engineering. A proline degradation-deficient E. coli strain was constructed by deleting the putA gene encoding proline dehydrogenase. Whole-cell biotransformations with this mutant strain led not only to quantitative proline hydroxylation but also to a doubling of the specific trans-4-l-hydroxyproline (hyp) formation rate, compared to the wild type. Analysis of carbon flux through central metabolism of the mutant strain revealed that the increased a-KG demand for P4H activity did not enhance the a-KG generating flux, indicating a tightly regulated TCA cycle operation under the conditions studied. In the wild type strain, P4H synthesis and catalysis caused a reduction in biomass yield. Interestingly, the ΔputA strain additionally compensated the associated ATP and NADH loss by reducing maintenance energy demands at comparably low glucose uptake rates, instead of increasing the TCA activity. The putA knockout in recombinant E. coli BL21(DE3)(pLysS) was found to be promising for productive P4H catalysis not only in terms of biotransformation yield, but also regarding the rates for biotransformation and proline uptake and the yield of hyp on the energy source. The results indicate that, upon a putA knockout, the coupling of the TCA-cycle to proline hydroxylation via the cosubstrate a-KG becomes a key factor constraining and a target to further improve the efficiency of a-KG-dependent biotransformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yi111完成签到,获得积分10
1秒前
1秒前
小王完成签到 ,获得积分10
1秒前
2秒前
沉默的傲安应助ramsey33采纳,获得50
2秒前
chcmuer完成签到,获得积分10
3秒前
王小花完成签到,获得积分10
4秒前
欢呼白晴完成签到 ,获得积分10
4秒前
daheeeee完成签到,获得积分10
5秒前
5秒前
李李李李完成签到,获得积分10
6秒前
6秒前
小太阳红红火火完成签到,获得积分10
7秒前
8秒前
无语的代真完成签到,获得积分10
9秒前
欣喜无色完成签到,获得积分20
9秒前
mengli完成签到 ,获得积分10
9秒前
haifang发布了新的文献求助20
9秒前
我唉科研完成签到,获得积分10
9秒前
潇湘夜风完成签到,获得积分10
9秒前
深情安青应助daijk采纳,获得30
9秒前
10秒前
10秒前
帅气的祥发布了新的文献求助10
10秒前
wu_shang完成签到,获得积分10
12秒前
独特乘风完成签到,获得积分10
13秒前
blueisthe发布了新的文献求助10
13秒前
周周完成签到,获得积分10
13秒前
兔农糖完成签到,获得积分10
14秒前
yunxiao完成签到 ,获得积分10
15秒前
16秒前
16秒前
CodeCraft应助chx123采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
17秒前
sfef应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
18秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158752
求助须知:如何正确求助?哪些是违规求助? 2809955
关于积分的说明 7884750
捐赠科研通 2468704
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012