Metabolic network capacity of Escherichia coli for Krebs cycle-dependent proline hydroxylation

大肠杆菌 羟基化 生物化学 脯氨酸 化学 代谢途径 生物 微生物学 新陈代谢 氨基酸 基因
作者
Eleni Theodosiou,Oliver Frick,Bruno Bühler,Andreas Schmid
出处
期刊:Microbial Cell Factories [Springer Nature]
卷期号:14 (1) 被引量:27
标识
DOI:10.1186/s12934-015-0298-1
摘要

Understanding the metabolism of the microbial host is essential for the development and optimization of whole-cell based biocatalytic processes, as it dictates production efficiency. This is especially true for redox biocatalysis where metabolically active cells are employed because of the cofactor/cosubstrate regenerative capacity endogenous in the host. Recombinant Escherichia coli was used for overproducing proline-4-hydroxylase (P4H), a dioxygenase catalyzing the hydroxylation of free l-proline into trans-4-hydroxy-l-proline with a-ketoglutarate (a-KG) as cosubstrate. In this whole-cell biocatalyst, central carbon metabolism provides the required cosubstrate a-KG, coupling P4H biocatalytic performance directly to carbon metabolism and metabolic activity. By applying both experimental and computational biology tools, such as metabolic engineering and 13C-metabolic flux analysis (13C-MFA), we investigated and quantitatively described the physiological, metabolic, and bioenergetic response of the whole-cell biocatalyst to the targeted bioconversion and identified possible metabolic bottlenecks for further rational pathway engineering. A proline degradation-deficient E. coli strain was constructed by deleting the putA gene encoding proline dehydrogenase. Whole-cell biotransformations with this mutant strain led not only to quantitative proline hydroxylation but also to a doubling of the specific trans-4-l-hydroxyproline (hyp) formation rate, compared to the wild type. Analysis of carbon flux through central metabolism of the mutant strain revealed that the increased a-KG demand for P4H activity did not enhance the a-KG generating flux, indicating a tightly regulated TCA cycle operation under the conditions studied. In the wild type strain, P4H synthesis and catalysis caused a reduction in biomass yield. Interestingly, the ΔputA strain additionally compensated the associated ATP and NADH loss by reducing maintenance energy demands at comparably low glucose uptake rates, instead of increasing the TCA activity. The putA knockout in recombinant E. coli BL21(DE3)(pLysS) was found to be promising for productive P4H catalysis not only in terms of biotransformation yield, but also regarding the rates for biotransformation and proline uptake and the yield of hyp on the energy source. The results indicate that, upon a putA knockout, the coupling of the TCA-cycle to proline hydroxylation via the cosubstrate a-KG becomes a key factor constraining and a target to further improve the efficiency of a-KG-dependent biotransformations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小电驴完成签到,获得积分10
刚刚
好多分完成签到,获得积分20
刚刚
wuyoung发布了新的文献求助10
刚刚
tan完成签到,获得积分10
刚刚
流水发布了新的文献求助10
刚刚
粱乘风发布了新的文献求助10
1秒前
xiaolei001完成签到,获得积分0
1秒前
htzy完成签到,获得积分10
1秒前
Leo完成签到,获得积分10
1秒前
1秒前
TT001完成签到,获得积分10
2秒前
ding应助LDD采纳,获得10
2秒前
3秒前
miaosz完成签到,获得积分10
3秒前
3秒前
Young应助WN采纳,获得30
4秒前
CK完成签到,获得积分10
4秒前
镕臻完成签到,获得积分10
4秒前
英俊的铭应助李无敌采纳,获得10
5秒前
5秒前
tctc完成签到 ,获得积分20
6秒前
6秒前
hahaya完成签到,获得积分20
6秒前
小魏哥完成签到,获得积分10
7秒前
7秒前
小二郎应助笑点低战斗机采纳,获得10
7秒前
7秒前
Taoshiyi完成签到 ,获得积分10
7秒前
8秒前
沐阳完成签到,获得积分10
8秒前
喜悦的铭完成签到,获得积分10
8秒前
lym54发布了新的文献求助10
8秒前
zik应助快乐小子采纳,获得10
9秒前
张YS发布了新的文献求助10
9秒前
wenhui完成签到,获得积分10
9秒前
9秒前
hahaya发布了新的文献求助10
10秒前
文献小当家完成签到,获得积分10
10秒前
百里静枫发布了新的文献求助10
10秒前
kingwill发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997