Metabolic network capacity of Escherichia coli for Krebs cycle-dependent proline hydroxylation

大肠杆菌 羟基化 生物化学 脯氨酸 化学 代谢途径 生物 微生物学 新陈代谢 氨基酸 基因
作者
Eleni Theodosiou,Oliver Frick,Bruno Bühler,Andreas Schmid
出处
期刊:Microbial Cell Factories [BioMed Central]
卷期号:14 (1) 被引量:27
标识
DOI:10.1186/s12934-015-0298-1
摘要

Understanding the metabolism of the microbial host is essential for the development and optimization of whole-cell based biocatalytic processes, as it dictates production efficiency. This is especially true for redox biocatalysis where metabolically active cells are employed because of the cofactor/cosubstrate regenerative capacity endogenous in the host. Recombinant Escherichia coli was used for overproducing proline-4-hydroxylase (P4H), a dioxygenase catalyzing the hydroxylation of free l-proline into trans-4-hydroxy-l-proline with a-ketoglutarate (a-KG) as cosubstrate. In this whole-cell biocatalyst, central carbon metabolism provides the required cosubstrate a-KG, coupling P4H biocatalytic performance directly to carbon metabolism and metabolic activity. By applying both experimental and computational biology tools, such as metabolic engineering and 13C-metabolic flux analysis (13C-MFA), we investigated and quantitatively described the physiological, metabolic, and bioenergetic response of the whole-cell biocatalyst to the targeted bioconversion and identified possible metabolic bottlenecks for further rational pathway engineering. A proline degradation-deficient E. coli strain was constructed by deleting the putA gene encoding proline dehydrogenase. Whole-cell biotransformations with this mutant strain led not only to quantitative proline hydroxylation but also to a doubling of the specific trans-4-l-hydroxyproline (hyp) formation rate, compared to the wild type. Analysis of carbon flux through central metabolism of the mutant strain revealed that the increased a-KG demand for P4H activity did not enhance the a-KG generating flux, indicating a tightly regulated TCA cycle operation under the conditions studied. In the wild type strain, P4H synthesis and catalysis caused a reduction in biomass yield. Interestingly, the ΔputA strain additionally compensated the associated ATP and NADH loss by reducing maintenance energy demands at comparably low glucose uptake rates, instead of increasing the TCA activity. The putA knockout in recombinant E. coli BL21(DE3)(pLysS) was found to be promising for productive P4H catalysis not only in terms of biotransformation yield, but also regarding the rates for biotransformation and proline uptake and the yield of hyp on the energy source. The results indicate that, upon a putA knockout, the coupling of the TCA-cycle to proline hydroxylation via the cosubstrate a-KG becomes a key factor constraining and a target to further improve the efficiency of a-KG-dependent biotransformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Giroro_roro发布了新的文献求助10
1秒前
1秒前
Wilson完成签到 ,获得积分10
1秒前
FACEISIN发布了新的文献求助10
2秒前
优美的契完成签到,获得积分10
2秒前
Marjorie完成签到,获得积分10
3秒前
4秒前
王宇杰发布了新的文献求助10
4秒前
4秒前
skbkbe发布了新的文献求助80
4秒前
yujiayou完成签到,获得积分10
5秒前
5秒前
wyp完成签到,获得积分20
7秒前
7秒前
离枝发布了新的文献求助10
8秒前
郑郑发布了新的文献求助10
8秒前
万能图书馆应助蒋念寒采纳,获得10
9秒前
好运连连完成签到 ,获得积分10
9秒前
kqhys完成签到,获得积分10
10秒前
FACEISIN完成签到,获得积分10
12秒前
爱学有机发布了新的文献求助10
12秒前
我不吃葱发布了新的文献求助20
12秒前
科研通AI5应助无私追命采纳,获得10
12秒前
zhangyu应助过时的又槐采纳,获得10
13秒前
13秒前
14秒前
身法马可波罗完成签到 ,获得积分10
15秒前
15秒前
16秒前
chloe完成签到 ,获得积分10
17秒前
辛勤的芾发布了新的文献求助10
18秒前
丁仪发布了新的文献求助10
18秒前
风中飞绿完成签到,获得积分20
18秒前
脑洞疼应助TRY采纳,获得10
18秒前
小趴菜完成签到,获得积分10
18秒前
wuyu完成签到,获得积分10
18秒前
20秒前
20秒前
bkagyin应助哦1采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992746
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263200
捐赠科研通 3273346
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809609