估计员
数学
一致性(知识库)
维数(图论)
主成分分析
统计
最大似然
趋同(经济学)
应用数学
鉴定(生物学)
收敛速度
因子分析
渐近分布
似然原理
计量经济学
估计理论
拟极大似然
期望最大化算法
计算机科学
组合数学
植物
生物
经济增长
频道(广播)
经济
计算机网络
几何学
摘要
This paper considers the maximum likelihood estimation of factor models of high dimension, where the number of variables (N) is comparable with or even greater than the number of observations (T). An inferential theory is developed. We establish not only consistency but also the rate of convergence and the limiting distributions. Five different sets of identification conditions are considered. We show that the distributions of the MLE estimators depend on the identification restrictions. Unlike the principal components approach, the maximum likelihood estimator explicitly allows heteroskedasticities, which are jointly estimated with other parameters. Efficiency of MLE relative to the principal components method is also considered.
科研通智能强力驱动
Strongly Powered by AbleSci AI